Model save
Browse files- README.md +50 -222
- config.json +36 -208
- model.safetensors +2 -2
- preprocessor_config.json +2 -2
- runs/Apr13_17-20-43_1de1ffca588a/events.out.tfevents.1713028852.1de1ffca588a.5437.0 +3 -0
- runs/Apr13_17-25-21_1de1ffca588a/events.out.tfevents.1713029133.1de1ffca588a.5437.1 +3 -0
- runs/Apr13_17-29-57_1de1ffca588a/events.out.tfevents.1713029406.1de1ffca588a.5437.2 +3 -0
- runs/Apr13_17-37-04_1de1ffca588a/events.out.tfevents.1713029837.1de1ffca588a.5437.3 +3 -0
- runs/Apr13_17-38-05_1de1ffca588a/events.out.tfevents.1713029893.1de1ffca588a.5437.4 +3 -0
- runs/Apr13_17-53-19_1de1ffca588a/events.out.tfevents.1713030809.1de1ffca588a.14450.0 +3 -0
- training_args.bin +1 -1
README.md
CHANGED
@@ -15,218 +15,46 @@ should probably proofread and complete it, then remove this comment. -->
|
|
15 |
|
16 |
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on an unknown dataset.
|
17 |
It achieves the following results on the evaluation set:
|
18 |
-
- Loss:
|
19 |
-
- Mean Iou: 0.
|
20 |
-
- Mean Accuracy: 0.
|
21 |
-
- Overall Accuracy: 0.
|
22 |
- Accuracy Background: nan
|
23 |
-
- Accuracy
|
24 |
-
- Accuracy
|
25 |
-
- Accuracy
|
26 |
-
- Accuracy
|
27 |
-
- Accuracy
|
28 |
-
- Accuracy
|
29 |
-
- Accuracy
|
30 |
-
- Accuracy
|
31 |
-
- Accuracy
|
32 |
-
- Accuracy
|
33 |
-
- Accuracy
|
34 |
-
- Accuracy
|
35 |
-
- Accuracy
|
36 |
-
- Accuracy
|
37 |
-
- Accuracy
|
38 |
-
- Accuracy
|
39 |
-
- Accuracy
|
40 |
-
- Accuracy Red beans: nan
|
41 |
-
- Accuracy Cashew: nan
|
42 |
-
- Accuracy Dried cranberries: nan
|
43 |
-
- Accuracy Soy: 0.0
|
44 |
-
- Accuracy Walnut: nan
|
45 |
-
- Accuracy Peanut: nan
|
46 |
-
- Accuracy Egg: 0.0
|
47 |
-
- Accuracy Apple: 0.0
|
48 |
-
- Accuracy Date: nan
|
49 |
-
- Accuracy Apricot: nan
|
50 |
-
- Accuracy Avocado: 0.0
|
51 |
-
- Accuracy Banana: 0.0
|
52 |
-
- Accuracy Strawberry: 0.0771
|
53 |
-
- Accuracy Cherry: 0.0
|
54 |
-
- Accuracy Blueberry: 0.0
|
55 |
-
- Accuracy Raspberry: 0.0
|
56 |
-
- Accuracy Mango: 0.0
|
57 |
-
- Accuracy Olives: 0.0
|
58 |
-
- Accuracy Peach: nan
|
59 |
-
- Accuracy Lemon: 0.0515
|
60 |
-
- Accuracy Pear: nan
|
61 |
-
- Accuracy Fig: nan
|
62 |
-
- Accuracy Pineapple: 0.0
|
63 |
-
- Accuracy Grape: 0.0
|
64 |
-
- Accuracy Kiwi: 0.0
|
65 |
-
- Accuracy Melon: 0.0
|
66 |
-
- Accuracy Orange: 0.0
|
67 |
-
- Accuracy Watermelon: 0.0
|
68 |
-
- Accuracy Steak: 0.5884
|
69 |
-
- Accuracy Pork: 0.0003
|
70 |
-
- Accuracy Chicken duck: 0.6623
|
71 |
-
- Accuracy Sausage: 0.0
|
72 |
-
- Accuracy Fried meat: 0.0
|
73 |
-
- Accuracy Lamb: 0.0
|
74 |
-
- Accuracy Sauce: 0.1892
|
75 |
-
- Accuracy Crab: 0.0
|
76 |
-
- Accuracy Fish: 0.0
|
77 |
-
- Accuracy Shellfish: 0.0
|
78 |
-
- Accuracy Shrimp: 0.0
|
79 |
-
- Accuracy Soup: 0.0
|
80 |
-
- Accuracy Bread: 0.8206
|
81 |
-
- Accuracy Corn: 0.7645
|
82 |
-
- Accuracy Hamburg: nan
|
83 |
-
- Accuracy Pizza: 0.0
|
84 |
-
- Accuracy hanamaki baozi: nan
|
85 |
-
- Accuracy Wonton dumplings: 0.0
|
86 |
-
- Accuracy Pasta: 0.0
|
87 |
-
- Accuracy Noodles: 0.0852
|
88 |
-
- Accuracy Rice: 0.6730
|
89 |
-
- Accuracy Pie: 0.0233
|
90 |
-
- Accuracy Tofu: nan
|
91 |
-
- Accuracy Eggplant: nan
|
92 |
-
- Accuracy Potato: 0.4689
|
93 |
-
- Accuracy Garlic: 0.0
|
94 |
-
- Accuracy Cauliflower: 0.0
|
95 |
-
- Accuracy Tomato: 0.6533
|
96 |
-
- Accuracy Kelp: nan
|
97 |
-
- Accuracy Seaweed: nan
|
98 |
-
- Accuracy Spring onion: 0.0
|
99 |
-
- Accuracy Rape: 0.0
|
100 |
-
- Accuracy Ginger: 0.0
|
101 |
-
- Accuracy Okra: nan
|
102 |
-
- Accuracy Lettuce: 0.0739
|
103 |
-
- Accuracy Pumpkin: 0.0
|
104 |
-
- Accuracy Cucumber: 0.0540
|
105 |
-
- Accuracy White radish: 0.0
|
106 |
-
- Accuracy Carrot: 0.8574
|
107 |
-
- Accuracy Asparagus: 0.0
|
108 |
-
- Accuracy Bamboo shoots: nan
|
109 |
-
- Accuracy Broccoli: 0.9624
|
110 |
-
- Accuracy Celery stick: 0.0
|
111 |
-
- Accuracy Cilantro mint: 0.0126
|
112 |
-
- Accuracy Snow peas: 0.0
|
113 |
-
- Accuracy cabbage: 0.0
|
114 |
-
- Accuracy Bean sprouts: nan
|
115 |
-
- Accuracy Onion: 0.0
|
116 |
-
- Accuracy Pepper: 0.0
|
117 |
-
- Accuracy Green beans: 0.0
|
118 |
-
- Accuracy French beans: 0.7100
|
119 |
-
- Accuracy King oyster mushroom: nan
|
120 |
-
- Accuracy Shiitake: 0.0
|
121 |
-
- Accuracy Enoki mushroom: nan
|
122 |
-
- Accuracy Oyster mushroom: nan
|
123 |
-
- Accuracy White button mushroom: 0.0
|
124 |
-
- Accuracy Salad: 0.0
|
125 |
-
- Accuracy Other ingredients: 0.0
|
126 |
- Iou Background: 0.0
|
127 |
-
- Iou
|
128 |
-
- Iou
|
129 |
-
- Iou
|
130 |
-
- Iou
|
131 |
-
- Iou
|
132 |
-
- Iou
|
133 |
-
- Iou
|
134 |
-
- Iou
|
135 |
-
- Iou
|
136 |
-
- Iou
|
137 |
-
- Iou
|
138 |
-
- Iou
|
139 |
-
- Iou
|
140 |
-
- Iou
|
141 |
-
- Iou
|
142 |
-
- Iou
|
143 |
-
- Iou
|
144 |
-
- Iou Red beans: nan
|
145 |
-
- Iou Cashew: nan
|
146 |
-
- Iou Dried cranberries: nan
|
147 |
-
- Iou Soy: 0.0
|
148 |
-
- Iou Walnut: nan
|
149 |
-
- Iou Peanut: nan
|
150 |
-
- Iou Egg: 0.0
|
151 |
-
- Iou Apple: 0.0
|
152 |
-
- Iou Date: nan
|
153 |
-
- Iou Apricot: nan
|
154 |
-
- Iou Avocado: 0.0
|
155 |
-
- Iou Banana: 0.0
|
156 |
-
- Iou Strawberry: 0.0755
|
157 |
-
- Iou Cherry: 0.0
|
158 |
-
- Iou Blueberry: 0.0
|
159 |
-
- Iou Raspberry: 0.0
|
160 |
-
- Iou Mango: 0.0
|
161 |
-
- Iou Olives: 0.0
|
162 |
-
- Iou Peach: nan
|
163 |
-
- Iou Lemon: 0.0473
|
164 |
-
- Iou Pear: nan
|
165 |
-
- Iou Fig: nan
|
166 |
-
- Iou Pineapple: 0.0
|
167 |
-
- Iou Grape: 0.0
|
168 |
-
- Iou Kiwi: 0.0
|
169 |
-
- Iou Melon: 0.0
|
170 |
-
- Iou Orange: 0.0
|
171 |
-
- Iou Watermelon: 0.0
|
172 |
-
- Iou Steak: 0.3273
|
173 |
-
- Iou Pork: 0.0003
|
174 |
-
- Iou Chicken duck: 0.2441
|
175 |
-
- Iou Sausage: 0.0
|
176 |
-
- Iou Fried meat: 0.0
|
177 |
-
- Iou Lamb: 0.0
|
178 |
-
- Iou Sauce: 0.1344
|
179 |
-
- Iou Crab: 0.0
|
180 |
-
- Iou Fish: 0.0
|
181 |
-
- Iou Shellfish: 0.0
|
182 |
-
- Iou Shrimp: 0.0
|
183 |
-
- Iou Soup: 0.0
|
184 |
-
- Iou Bread: 0.3788
|
185 |
-
- Iou Corn: 0.5467
|
186 |
-
- Iou Hamburg: nan
|
187 |
-
- Iou Pizza: 0.0
|
188 |
-
- Iou hanamaki baozi: nan
|
189 |
-
- Iou Wonton dumplings: 0.0
|
190 |
-
- Iou Pasta: 0.0
|
191 |
-
- Iou Noodles: 0.0849
|
192 |
-
- Iou Rice: 0.4561
|
193 |
-
- Iou Pie: 0.0216
|
194 |
-
- Iou Tofu: nan
|
195 |
-
- Iou Eggplant: nan
|
196 |
-
- Iou Potato: 0.1776
|
197 |
-
- Iou Garlic: 0.0
|
198 |
-
- Iou Cauliflower: 0.0
|
199 |
-
- Iou Tomato: 0.3098
|
200 |
-
- Iou Kelp: nan
|
201 |
-
- Iou Seaweed: nan
|
202 |
-
- Iou Spring onion: 0.0
|
203 |
-
- Iou Rape: 0.0
|
204 |
-
- Iou Ginger: 0.0
|
205 |
-
- Iou Okra: nan
|
206 |
-
- Iou Lettuce: 0.0659
|
207 |
-
- Iou Pumpkin: 0.0
|
208 |
-
- Iou Cucumber: 0.0510
|
209 |
-
- Iou White radish: 0.0
|
210 |
-
- Iou Carrot: 0.5396
|
211 |
-
- Iou Asparagus: 0.0
|
212 |
-
- Iou Bamboo shoots: nan
|
213 |
-
- Iou Broccoli: 0.4439
|
214 |
-
- Iou Celery stick: 0.0
|
215 |
-
- Iou Cilantro mint: 0.0124
|
216 |
-
- Iou Snow peas: 0.0
|
217 |
-
- Iou cabbage: 0.0
|
218 |
-
- Iou Bean sprouts: nan
|
219 |
-
- Iou Onion: 0.0
|
220 |
-
- Iou Pepper: 0.0
|
221 |
-
- Iou Green beans: 0.0
|
222 |
-
- Iou French beans: 0.4446
|
223 |
-
- Iou King oyster mushroom: nan
|
224 |
-
- Iou Shiitake: 0.0
|
225 |
-
- Iou Enoki mushroom: nan
|
226 |
-
- Iou Oyster mushroom: nan
|
227 |
-
- Iou White button mushroom: 0.0
|
228 |
-
- Iou Salad: 0.0
|
229 |
-
- Iou Other ingredients: 0.0
|
230 |
|
231 |
## Model description
|
232 |
|
@@ -257,18 +85,18 @@ The following hyperparameters were used during training:
|
|
257 |
|
258 |
### Training results
|
259 |
|
260 |
-
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy
|
261 |
-
|
262 |
-
|
|
263 |
-
|
|
264 |
-
|
|
265 |
-
|
|
266 |
-
|
|
267 |
-
|
|
268 |
-
|
|
269 |
-
|
|
270 |
-
|
|
271 |
-
|
|
272 |
|
273 |
|
274 |
### Framework versions
|
|
|
15 |
|
16 |
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on an unknown dataset.
|
17 |
It achieves the following results on the evaluation set:
|
18 |
+
- Loss: 0.3204
|
19 |
+
- Mean Iou: 0.3879
|
20 |
+
- Mean Accuracy: 0.4943
|
21 |
+
- Overall Accuracy: 0.7036
|
22 |
- Accuracy Background: nan
|
23 |
+
- Accuracy Hat: 0.0
|
24 |
+
- Accuracy Hair: 0.8304
|
25 |
+
- Accuracy Sunglasses: 0.0
|
26 |
+
- Accuracy Upper-clothes: 0.8535
|
27 |
+
- Accuracy Skirt: 0.6956
|
28 |
+
- Accuracy Pants: 0.8303
|
29 |
+
- Accuracy Dress: 0.4990
|
30 |
+
- Accuracy Belt: 0.0
|
31 |
+
- Accuracy Left-shoe: 0.1708
|
32 |
+
- Accuracy Right-shoe: 0.3445
|
33 |
+
- Accuracy Face: 0.8594
|
34 |
+
- Accuracy Left-leg: 0.7149
|
35 |
+
- Accuracy Right-leg: 0.7322
|
36 |
+
- Accuracy Left-arm: 0.6598
|
37 |
+
- Accuracy Right-arm: 0.6786
|
38 |
+
- Accuracy Bag: 0.5344
|
39 |
+
- Accuracy Scarf: 0.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
- Iou Background: 0.0
|
41 |
+
- Iou Hat: 0.0
|
42 |
+
- Iou Hair: 0.7126
|
43 |
+
- Iou Sunglasses: 0.0
|
44 |
+
- Iou Upper-clothes: 0.6681
|
45 |
+
- Iou Skirt: 0.5240
|
46 |
+
- Iou Pants: 0.6700
|
47 |
+
- Iou Dress: 0.4029
|
48 |
+
- Iou Belt: 0.0
|
49 |
+
- Iou Left-shoe: 0.1600
|
50 |
+
- Iou Right-shoe: 0.2739
|
51 |
+
- Iou Face: 0.7169
|
52 |
+
- Iou Left-leg: 0.5757
|
53 |
+
- Iou Right-leg: 0.6008
|
54 |
+
- Iou Left-arm: 0.5868
|
55 |
+
- Iou Right-arm: 0.6012
|
56 |
+
- Iou Bag: 0.4902
|
57 |
+
- Iou Scarf: 0.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
## Model description
|
60 |
|
|
|
85 |
|
86 |
### Training results
|
87 |
|
88 |
+
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy Hat | Accuracy Hair | Accuracy Sunglasses | Accuracy Upper-clothes | Accuracy Skirt | Accuracy Pants | Accuracy Dress | Accuracy Belt | Accuracy Left-shoe | Accuracy Right-shoe | Accuracy Face | Accuracy Left-leg | Accuracy Right-leg | Accuracy Left-arm | Accuracy Right-arm | Accuracy Bag | Accuracy Scarf | Iou Background | Iou Hat | Iou Hair | Iou Sunglasses | Iou Upper-clothes | Iou Skirt | Iou Pants | Iou Dress | Iou Belt | Iou Left-shoe | Iou Right-shoe | Iou Face | Iou Left-leg | Iou Right-leg | Iou Left-arm | Iou Right-arm | Iou Bag | Iou Scarf |
|
89 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------:|:------------:|:-------------:|:-------------------:|:----------------------:|:--------------:|:--------------:|:--------------:|:-------------:|:------------------:|:-------------------:|:-------------:|:-----------------:|:------------------:|:-----------------:|:------------------:|:------------:|:--------------:|:--------------:|:-------:|:--------:|:--------------:|:-----------------:|:---------:|:---------:|:---------:|:--------:|:-------------:|:--------------:|:--------:|:------------:|:-------------:|:------------:|:-------------:|:-------:|:---------:|
|
90 |
+
| 1.5584 | 1.0 | 100 | 1.4751 | 0.1357 | 0.2382 | 0.4526 | nan | 0.0 | 0.8771 | 0.0 | 0.8883 | 0.0443 | 0.7221 | 0.0035 | 0.0 | 0.0187 | 0.0055 | 0.2572 | 0.5884 | 0.5612 | 0.0822 | 0.0013 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5636 | 0.0 | 0.3813 | 0.0433 | 0.3814 | 0.0035 | 0.0 | 0.0182 | 0.0055 | 0.2523 | 0.3602 | 0.3582 | 0.0746 | 0.0013 | 0.0 | 0.0 |
|
91 |
+
| 1.1073 | 2.0 | 200 | 1.0997 | 0.2194 | 0.3308 | 0.5583 | nan | 0.0 | 0.9122 | 0.0 | 0.8933 | 0.5007 | 0.6982 | 0.1416 | 0.0 | 0.0076 | 0.0436 | 0.7573 | 0.6194 | 0.7115 | 0.2770 | 0.0608 | 0.0012 | 0.0 | 0.0 | 0.0 | 0.6610 | 0.0 | 0.4693 | 0.3429 | 0.5229 | 0.1246 | 0.0 | 0.0076 | 0.0416 | 0.6491 | 0.4038 | 0.4308 | 0.2338 | 0.0605 | 0.0012 | 0.0 |
|
92 |
+
| 0.805 | 3.0 | 300 | 0.7604 | 0.2466 | 0.3515 | 0.5861 | nan | 0.0 | 0.8500 | 0.0 | 0.8839 | 0.4934 | 0.8517 | 0.2381 | 0.0 | 0.0038 | 0.0406 | 0.8209 | 0.5776 | 0.7025 | 0.2485 | 0.2341 | 0.0298 | 0.0 | 0.0 | 0.0 | 0.6900 | 0.0 | 0.5378 | 0.3542 | 0.5424 | 0.2035 | 0.0 | 0.0038 | 0.0391 | 0.6827 | 0.4027 | 0.4848 | 0.2384 | 0.2289 | 0.0296 | 0.0 |
|
93 |
+
| 0.604 | 4.0 | 400 | 0.5498 | 0.2906 | 0.3944 | 0.6189 | nan | 0.0 | 0.8108 | 0.0 | 0.8788 | 0.6810 | 0.7835 | 0.2571 | 0.0 | 0.0016 | 0.1009 | 0.8612 | 0.6496 | 0.6929 | 0.4317 | 0.4043 | 0.1522 | 0.0 | 0.0 | 0.0 | 0.6910 | 0.0 | 0.5894 | 0.4338 | 0.6222 | 0.2234 | 0.0 | 0.0016 | 0.0918 | 0.6875 | 0.4402 | 0.5096 | 0.4032 | 0.3877 | 0.1492 | 0.0 |
|
94 |
+
| 0.4334 | 5.0 | 500 | 0.4440 | 0.3219 | 0.4196 | 0.6428 | nan | 0.0 | 0.8265 | 0.0 | 0.8612 | 0.4725 | 0.8254 | 0.4861 | 0.0 | 0.0033 | 0.1673 | 0.8410 | 0.6689 | 0.6548 | 0.5207 | 0.5088 | 0.2962 | 0.0 | 0.0 | 0.0 | 0.6959 | 0.0 | 0.6233 | 0.3809 | 0.6130 | 0.3510 | 0.0 | 0.0033 | 0.1437 | 0.7028 | 0.4987 | 0.5323 | 0.4820 | 0.4809 | 0.2858 | 0.0 |
|
95 |
+
| 0.4213 | 6.0 | 600 | 0.3817 | 0.3491 | 0.4549 | 0.6658 | nan | 0.0 | 0.8247 | 0.0 | 0.8762 | 0.7055 | 0.7855 | 0.3145 | 0.0 | 0.0273 | 0.2536 | 0.8611 | 0.6931 | 0.7257 | 0.6254 | 0.6281 | 0.4132 | 0.0 | 0.0 | 0.0 | 0.7044 | 0.0 | 0.6379 | 0.4727 | 0.6504 | 0.2752 | 0.0 | 0.0272 | 0.2056 | 0.7066 | 0.5298 | 0.5651 | 0.5557 | 0.5634 | 0.3902 | 0.0 |
|
96 |
+
| 0.3325 | 7.0 | 700 | 0.3484 | 0.3690 | 0.4758 | 0.6840 | nan | 0.0 | 0.8352 | 0.0 | 0.8333 | 0.6651 | 0.8321 | 0.4643 | 0.0 | 0.0780 | 0.3248 | 0.8554 | 0.6926 | 0.7224 | 0.6461 | 0.6486 | 0.4906 | 0.0 | 0.0 | 0.0 | 0.7079 | 0.0 | 0.6573 | 0.4848 | 0.6432 | 0.3743 | 0.0 | 0.0765 | 0.2516 | 0.7128 | 0.5528 | 0.5816 | 0.5693 | 0.5773 | 0.4521 | 0.0 |
|
97 |
+
| 0.2556 | 8.0 | 800 | 0.3384 | 0.3795 | 0.4845 | 0.6971 | nan | 0.0 | 0.8404 | 0.0 | 0.8723 | 0.6558 | 0.8311 | 0.4614 | 0.0 | 0.1270 | 0.3250 | 0.8533 | 0.6978 | 0.7209 | 0.6525 | 0.6619 | 0.5364 | 0.0 | 0.0 | 0.0 | 0.7130 | 0.0 | 0.6572 | 0.5012 | 0.6634 | 0.3790 | 0.0 | 0.1220 | 0.2599 | 0.7153 | 0.5627 | 0.5908 | 0.5849 | 0.5933 | 0.4873 | 0.0 |
|
98 |
+
| 0.3337 | 9.0 | 900 | 0.3201 | 0.3806 | 0.4846 | 0.6943 | nan | 0.0 | 0.8309 | 0.0 | 0.8803 | 0.5781 | 0.8338 | 0.4711 | 0.0 | 0.1599 | 0.3381 | 0.8563 | 0.7194 | 0.7205 | 0.6508 | 0.6578 | 0.5406 | 0.0 | 0.0 | 0.0 | 0.7122 | 0.0 | 0.6504 | 0.4790 | 0.6587 | 0.3859 | 0.0 | 0.1507 | 0.2691 | 0.7173 | 0.5748 | 0.5947 | 0.5816 | 0.5871 | 0.4893 | 0.0 |
|
99 |
+
| 0.2843 | 10.0 | 1000 | 0.3204 | 0.3879 | 0.4943 | 0.7036 | nan | 0.0 | 0.8304 | 0.0 | 0.8535 | 0.6956 | 0.8303 | 0.4990 | 0.0 | 0.1708 | 0.3445 | 0.8594 | 0.7149 | 0.7322 | 0.6598 | 0.6786 | 0.5344 | 0.0 | 0.0 | 0.0 | 0.7126 | 0.0 | 0.6681 | 0.5240 | 0.6700 | 0.4029 | 0.0 | 0.1600 | 0.2739 | 0.7169 | 0.5757 | 0.6008 | 0.5868 | 0.6012 | 0.4902 | 0.0 |
|
100 |
|
101 |
|
102 |
### Framework versions
|
config.json
CHANGED
@@ -28,218 +28,46 @@
|
|
28 |
256
|
29 |
],
|
30 |
"id2label": {
|
31 |
-
"0": "
|
32 |
-
"1": "
|
33 |
-
"2": "
|
34 |
-
"3": "
|
35 |
-
"4": "
|
36 |
-
"5": "
|
37 |
-
"6": "
|
38 |
-
"7": "
|
39 |
-
"8": "
|
40 |
-
"9": "
|
41 |
-
"10": "
|
42 |
-
"11": "
|
43 |
-
"12": "
|
44 |
-
"13": "
|
45 |
-
"14": "
|
46 |
-
"15": "
|
47 |
-
"16": "
|
48 |
-
"17": "
|
49 |
-
"18": "red beans",
|
50 |
-
"19": "cashew",
|
51 |
-
"20": "dried cranberries",
|
52 |
-
"21": "soy",
|
53 |
-
"22": "walnut",
|
54 |
-
"23": "peanut",
|
55 |
-
"24": "egg",
|
56 |
-
"25": "apple",
|
57 |
-
"26": "date",
|
58 |
-
"27": "apricot",
|
59 |
-
"28": "avocado",
|
60 |
-
"29": "banana",
|
61 |
-
"30": "strawberry",
|
62 |
-
"31": "cherry",
|
63 |
-
"32": "blueberry",
|
64 |
-
"33": "raspberry",
|
65 |
-
"34": "mango",
|
66 |
-
"35": "olives",
|
67 |
-
"36": "peach",
|
68 |
-
"37": "lemon",
|
69 |
-
"38": "pear",
|
70 |
-
"39": "fig",
|
71 |
-
"40": "pineapple",
|
72 |
-
"41": "grape",
|
73 |
-
"42": "kiwi",
|
74 |
-
"43": "melon",
|
75 |
-
"44": "orange",
|
76 |
-
"45": "watermelon",
|
77 |
-
"46": "steak",
|
78 |
-
"47": "pork",
|
79 |
-
"48": "chicken duck",
|
80 |
-
"49": "sausage",
|
81 |
-
"50": "fried meat",
|
82 |
-
"51": "lamb",
|
83 |
-
"52": "sauce",
|
84 |
-
"53": "crab",
|
85 |
-
"54": "fish",
|
86 |
-
"55": "shellfish",
|
87 |
-
"56": "shrimp",
|
88 |
-
"57": "soup",
|
89 |
-
"58": "bread",
|
90 |
-
"59": "corn",
|
91 |
-
"60": "hamburg",
|
92 |
-
"61": "pizza",
|
93 |
-
"62": " hanamaki baozi",
|
94 |
-
"63": "wonton dumplings",
|
95 |
-
"64": "pasta",
|
96 |
-
"65": "noodles",
|
97 |
-
"66": "rice",
|
98 |
-
"67": "pie",
|
99 |
-
"68": "tofu",
|
100 |
-
"69": "eggplant",
|
101 |
-
"70": "potato",
|
102 |
-
"71": "garlic",
|
103 |
-
"72": "cauliflower",
|
104 |
-
"73": "tomato",
|
105 |
-
"74": "kelp",
|
106 |
-
"75": "seaweed",
|
107 |
-
"76": "spring onion",
|
108 |
-
"77": "rape",
|
109 |
-
"78": "ginger",
|
110 |
-
"79": "okra",
|
111 |
-
"80": "lettuce",
|
112 |
-
"81": "pumpkin",
|
113 |
-
"82": "cucumber",
|
114 |
-
"83": "white radish",
|
115 |
-
"84": "carrot",
|
116 |
-
"85": "asparagus",
|
117 |
-
"86": "bamboo shoots",
|
118 |
-
"87": "broccoli",
|
119 |
-
"88": "celery stick",
|
120 |
-
"89": "cilantro mint",
|
121 |
-
"90": "snow peas",
|
122 |
-
"91": " cabbage",
|
123 |
-
"92": "bean sprouts",
|
124 |
-
"93": "onion",
|
125 |
-
"94": "pepper",
|
126 |
-
"95": "green beans",
|
127 |
-
"96": "French beans",
|
128 |
-
"97": "king oyster mushroom",
|
129 |
-
"98": "shiitake",
|
130 |
-
"99": "enoki mushroom",
|
131 |
-
"100": "oyster mushroom",
|
132 |
-
"101": "white button mushroom",
|
133 |
-
"102": "salad",
|
134 |
-
"103": "other ingredients"
|
135 |
},
|
136 |
"image_size": 224,
|
137 |
"initializer_range": 0.02,
|
138 |
"label2id": {
|
139 |
-
"
|
140 |
-
"
|
141 |
-
"
|
142 |
-
"
|
143 |
-
"
|
144 |
-
"
|
145 |
-
"
|
146 |
-
"
|
147 |
-
"
|
148 |
-
"
|
149 |
-
"
|
150 |
-
"
|
151 |
-
"
|
152 |
-
"
|
153 |
-
"
|
154 |
-
"
|
155 |
-
"
|
156 |
-
"
|
157 |
-
"carrot": 84,
|
158 |
-
"cashew": 19,
|
159 |
-
"cauliflower": 72,
|
160 |
-
"celery stick": 88,
|
161 |
-
"cheese butter": 9,
|
162 |
-
"cherry": 31,
|
163 |
-
"chicken duck": 48,
|
164 |
-
"chocolate": 4,
|
165 |
-
"cilantro mint": 89,
|
166 |
-
"coffee": 13,
|
167 |
-
"corn": 59,
|
168 |
-
"crab": 53,
|
169 |
-
"cucumber": 82,
|
170 |
-
"date": 26,
|
171 |
-
"dried cranberries": 20,
|
172 |
-
"egg": 24,
|
173 |
-
"egg tart": 2,
|
174 |
-
"eggplant": 69,
|
175 |
-
"enoki mushroom": 99,
|
176 |
-
"fig": 39,
|
177 |
-
"fish": 54,
|
178 |
-
"french fries": 3,
|
179 |
-
"fried meat": 50,
|
180 |
-
"garlic": 71,
|
181 |
-
"ginger": 78,
|
182 |
-
"grape": 41,
|
183 |
-
"green beans": 95,
|
184 |
-
"hamburg": 60,
|
185 |
-
"ice cream": 8,
|
186 |
-
"juice": 14,
|
187 |
-
"kelp": 74,
|
188 |
-
"king oyster mushroom": 97,
|
189 |
-
"kiwi": 42,
|
190 |
-
"lamb": 51,
|
191 |
-
"lemon": 37,
|
192 |
-
"lettuce": 80,
|
193 |
-
"mango": 34,
|
194 |
-
"melon": 43,
|
195 |
-
"milk": 15,
|
196 |
-
"milkshake": 12,
|
197 |
-
"noodles": 65,
|
198 |
-
"okra": 79,
|
199 |
-
"olives": 35,
|
200 |
-
"onion": 93,
|
201 |
-
"orange": 44,
|
202 |
-
"other ingredients": 103,
|
203 |
-
"oyster mushroom": 100,
|
204 |
-
"pasta": 64,
|
205 |
-
"peach": 36,
|
206 |
-
"peanut": 23,
|
207 |
-
"pear": 38,
|
208 |
-
"pepper": 94,
|
209 |
-
"pie": 67,
|
210 |
-
"pineapple": 40,
|
211 |
-
"pizza": 61,
|
212 |
-
"popcorn": 6,
|
213 |
-
"pork": 47,
|
214 |
-
"potato": 70,
|
215 |
-
"pudding": 7,
|
216 |
-
"pumpkin": 81,
|
217 |
-
"rape": 77,
|
218 |
-
"raspberry": 33,
|
219 |
-
"red beans": 18,
|
220 |
-
"rice": 66,
|
221 |
-
"salad": 102,
|
222 |
-
"sauce": 52,
|
223 |
-
"sausage": 49,
|
224 |
-
"seaweed": 75,
|
225 |
-
"shellfish": 55,
|
226 |
-
"shiitake": 98,
|
227 |
-
"shrimp": 56,
|
228 |
-
"snow peas": 90,
|
229 |
-
"soup": 57,
|
230 |
-
"soy": 21,
|
231 |
-
"spring onion": 76,
|
232 |
-
"steak": 46,
|
233 |
-
"strawberry": 30,
|
234 |
-
"tea": 16,
|
235 |
-
"tofu": 68,
|
236 |
-
"tomato": 73,
|
237 |
-
"walnut": 22,
|
238 |
-
"watermelon": 45,
|
239 |
-
"white button mushroom": 101,
|
240 |
-
"white radish": 83,
|
241 |
-
"wine": 11,
|
242 |
-
"wonton dumplings": 63
|
243 |
},
|
244 |
"layer_norm_eps": 1e-06,
|
245 |
"mlp_ratios": [
|
|
|
28 |
256
|
29 |
],
|
30 |
"id2label": {
|
31 |
+
"0": "Background",
|
32 |
+
"1": "Hat",
|
33 |
+
"2": "Hair",
|
34 |
+
"3": "Sunglasses",
|
35 |
+
"4": "Upper-clothes",
|
36 |
+
"5": "Skirt",
|
37 |
+
"6": "Pants",
|
38 |
+
"7": "Dress",
|
39 |
+
"8": "Belt",
|
40 |
+
"9": "Left-shoe",
|
41 |
+
"10": "Right-shoe",
|
42 |
+
"11": "Face",
|
43 |
+
"12": "Left-leg",
|
44 |
+
"13": "Right-leg",
|
45 |
+
"14": "Left-arm",
|
46 |
+
"15": "Right-arm",
|
47 |
+
"16": "Bag",
|
48 |
+
"17": "Scarf"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
},
|
50 |
"image_size": 224,
|
51 |
"initializer_range": 0.02,
|
52 |
"label2id": {
|
53 |
+
"Background": 0,
|
54 |
+
"Bag": 16,
|
55 |
+
"Belt": 8,
|
56 |
+
"Dress": 7,
|
57 |
+
"Face": 11,
|
58 |
+
"Hair": 2,
|
59 |
+
"Hat": 1,
|
60 |
+
"Left-arm": 14,
|
61 |
+
"Left-leg": 12,
|
62 |
+
"Left-shoe": 9,
|
63 |
+
"Pants": 6,
|
64 |
+
"Right-arm": 15,
|
65 |
+
"Right-leg": 13,
|
66 |
+
"Right-shoe": 10,
|
67 |
+
"Scarf": 17,
|
68 |
+
"Skirt": 5,
|
69 |
+
"Sunglasses": 3,
|
70 |
+
"Upper-clothes": 4
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
},
|
72 |
"layer_norm_eps": 1e-06,
|
73 |
"mlp_ratios": [
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2c9ebf6f97d040acfcdfbb4969a1e510d9ae2e818bbc2e5d40c5bd511e511778
|
3 |
+
size 14901232
|
preprocessor_config.json
CHANGED
@@ -17,7 +17,7 @@
|
|
17 |
"resample": 2,
|
18 |
"rescale_factor": 0.00392156862745098,
|
19 |
"size": {
|
20 |
-
"height":
|
21 |
-
"width":
|
22 |
}
|
23 |
}
|
|
|
17 |
"resample": 2,
|
18 |
"rescale_factor": 0.00392156862745098,
|
19 |
"size": {
|
20 |
+
"height": 512,
|
21 |
+
"width": 512
|
22 |
}
|
23 |
}
|
runs/Apr13_17-20-43_1de1ffca588a/events.out.tfevents.1713028852.1de1ffca588a.5437.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4c9f40ccc9a2d4c6402775ffd40bb38d2bc61c213ae43ad03de94691c626a130
|
3 |
+
size 5197
|
runs/Apr13_17-25-21_1de1ffca588a/events.out.tfevents.1713029133.1de1ffca588a.5437.1
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:91147479fdd7e6aa3383855c0c9704a91725dab301031b0d15aecf323d245d3f
|
3 |
+
size 5197
|
runs/Apr13_17-29-57_1de1ffca588a/events.out.tfevents.1713029406.1de1ffca588a.5437.2
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5744e731fadf2ca2aab537c89b17b961054cc99793423d71ddb5c3284b4c12a7
|
3 |
+
size 5197
|
runs/Apr13_17-37-04_1de1ffca588a/events.out.tfevents.1713029837.1de1ffca588a.5437.3
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ab97b99c77a108513c3d1f8ba9a2555bbe32254e69b9badc45bcc34b7426fd60
|
3 |
+
size 5197
|
runs/Apr13_17-38-05_1de1ffca588a/events.out.tfevents.1713029893.1de1ffca588a.5437.4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c70ace649a9cede685a207d30e3e40b905b880e340ca5ab0b9bbcf1a7d83f8a4
|
3 |
+
size 5197
|
runs/Apr13_17-53-19_1de1ffca588a/events.out.tfevents.1713030809.1de1ffca588a.14450.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e8fe7da4058a7f080601fffa993c6c2bae1f9ae5143e565fac304f479922b9c2
|
3 |
+
size 241543
|
training_args.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 4920
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:acd5c8443412ec7dfbaf7d43ae5d5bf056ed7b1d06c4f430935f9d498febb191
|
3 |
size 4920
|