raks87 commited on
Commit
97b46c1
·
verified ·
1 Parent(s): 24df1fd

Model save

Browse files
README.md CHANGED
@@ -15,218 +15,46 @@ should probably proofread and complete it, then remove this comment. -->
15
 
16
  This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on an unknown dataset.
17
  It achieves the following results on the evaluation set:
18
- - Loss: 1.6018
19
- - Mean Iou: 0.0608
20
- - Mean Accuracy: 0.1072
21
- - Overall Accuracy: 0.3589
22
  - Accuracy Background: nan
23
- - Accuracy Candy: nan
24
- - Accuracy Egg tart: nan
25
- - Accuracy French fries: 0.0813
26
- - Accuracy Chocolate: 0.0
27
- - Accuracy Biscuit: 0.0
28
- - Accuracy Popcorn: nan
29
- - Accuracy Pudding: 0.0
30
- - Accuracy Ice cream: 0.3875
31
- - Accuracy Cheese butter: 0.0
32
- - Accuracy Cake: 0.0576
33
- - Accuracy Wine: 0.0
34
- - Accuracy Milkshake: 0.0
35
- - Accuracy Coffee: 0.0
36
- - Accuracy Juice: 0.0
37
- - Accuracy Milk: 0.0
38
- - Accuracy Tea: 0.0
39
- - Accuracy Almond: nan
40
- - Accuracy Red beans: nan
41
- - Accuracy Cashew: nan
42
- - Accuracy Dried cranberries: nan
43
- - Accuracy Soy: 0.0
44
- - Accuracy Walnut: nan
45
- - Accuracy Peanut: nan
46
- - Accuracy Egg: 0.0
47
- - Accuracy Apple: 0.0
48
- - Accuracy Date: nan
49
- - Accuracy Apricot: nan
50
- - Accuracy Avocado: 0.0
51
- - Accuracy Banana: 0.0
52
- - Accuracy Strawberry: 0.0771
53
- - Accuracy Cherry: 0.0
54
- - Accuracy Blueberry: 0.0
55
- - Accuracy Raspberry: 0.0
56
- - Accuracy Mango: 0.0
57
- - Accuracy Olives: 0.0
58
- - Accuracy Peach: nan
59
- - Accuracy Lemon: 0.0515
60
- - Accuracy Pear: nan
61
- - Accuracy Fig: nan
62
- - Accuracy Pineapple: 0.0
63
- - Accuracy Grape: 0.0
64
- - Accuracy Kiwi: 0.0
65
- - Accuracy Melon: 0.0
66
- - Accuracy Orange: 0.0
67
- - Accuracy Watermelon: 0.0
68
- - Accuracy Steak: 0.5884
69
- - Accuracy Pork: 0.0003
70
- - Accuracy Chicken duck: 0.6623
71
- - Accuracy Sausage: 0.0
72
- - Accuracy Fried meat: 0.0
73
- - Accuracy Lamb: 0.0
74
- - Accuracy Sauce: 0.1892
75
- - Accuracy Crab: 0.0
76
- - Accuracy Fish: 0.0
77
- - Accuracy Shellfish: 0.0
78
- - Accuracy Shrimp: 0.0
79
- - Accuracy Soup: 0.0
80
- - Accuracy Bread: 0.8206
81
- - Accuracy Corn: 0.7645
82
- - Accuracy Hamburg: nan
83
- - Accuracy Pizza: 0.0
84
- - Accuracy hanamaki baozi: nan
85
- - Accuracy Wonton dumplings: 0.0
86
- - Accuracy Pasta: 0.0
87
- - Accuracy Noodles: 0.0852
88
- - Accuracy Rice: 0.6730
89
- - Accuracy Pie: 0.0233
90
- - Accuracy Tofu: nan
91
- - Accuracy Eggplant: nan
92
- - Accuracy Potato: 0.4689
93
- - Accuracy Garlic: 0.0
94
- - Accuracy Cauliflower: 0.0
95
- - Accuracy Tomato: 0.6533
96
- - Accuracy Kelp: nan
97
- - Accuracy Seaweed: nan
98
- - Accuracy Spring onion: 0.0
99
- - Accuracy Rape: 0.0
100
- - Accuracy Ginger: 0.0
101
- - Accuracy Okra: nan
102
- - Accuracy Lettuce: 0.0739
103
- - Accuracy Pumpkin: 0.0
104
- - Accuracy Cucumber: 0.0540
105
- - Accuracy White radish: 0.0
106
- - Accuracy Carrot: 0.8574
107
- - Accuracy Asparagus: 0.0
108
- - Accuracy Bamboo shoots: nan
109
- - Accuracy Broccoli: 0.9624
110
- - Accuracy Celery stick: 0.0
111
- - Accuracy Cilantro mint: 0.0126
112
- - Accuracy Snow peas: 0.0
113
- - Accuracy cabbage: 0.0
114
- - Accuracy Bean sprouts: nan
115
- - Accuracy Onion: 0.0
116
- - Accuracy Pepper: 0.0
117
- - Accuracy Green beans: 0.0
118
- - Accuracy French beans: 0.7100
119
- - Accuracy King oyster mushroom: nan
120
- - Accuracy Shiitake: 0.0
121
- - Accuracy Enoki mushroom: nan
122
- - Accuracy Oyster mushroom: nan
123
- - Accuracy White button mushroom: 0.0
124
- - Accuracy Salad: 0.0
125
- - Accuracy Other ingredients: 0.0
126
  - Iou Background: 0.0
127
- - Iou Candy: nan
128
- - Iou Egg tart: nan
129
- - Iou French fries: 0.0723
130
- - Iou Chocolate: 0.0
131
- - Iou Biscuit: 0.0
132
- - Iou Popcorn: nan
133
- - Iou Pudding: 0.0
134
- - Iou Ice cream: 0.2640
135
- - Iou Cheese butter: 0.0
136
- - Iou Cake: 0.0479
137
- - Iou Wine: 0.0
138
- - Iou Milkshake: 0.0
139
- - Iou Coffee: 0.0
140
- - Iou Juice: 0.0
141
- - Iou Milk: 0.0
142
- - Iou Tea: 0.0
143
- - Iou Almond: nan
144
- - Iou Red beans: nan
145
- - Iou Cashew: nan
146
- - Iou Dried cranberries: nan
147
- - Iou Soy: 0.0
148
- - Iou Walnut: nan
149
- - Iou Peanut: nan
150
- - Iou Egg: 0.0
151
- - Iou Apple: 0.0
152
- - Iou Date: nan
153
- - Iou Apricot: nan
154
- - Iou Avocado: 0.0
155
- - Iou Banana: 0.0
156
- - Iou Strawberry: 0.0755
157
- - Iou Cherry: 0.0
158
- - Iou Blueberry: 0.0
159
- - Iou Raspberry: 0.0
160
- - Iou Mango: 0.0
161
- - Iou Olives: 0.0
162
- - Iou Peach: nan
163
- - Iou Lemon: 0.0473
164
- - Iou Pear: nan
165
- - Iou Fig: nan
166
- - Iou Pineapple: 0.0
167
- - Iou Grape: 0.0
168
- - Iou Kiwi: 0.0
169
- - Iou Melon: 0.0
170
- - Iou Orange: 0.0
171
- - Iou Watermelon: 0.0
172
- - Iou Steak: 0.3273
173
- - Iou Pork: 0.0003
174
- - Iou Chicken duck: 0.2441
175
- - Iou Sausage: 0.0
176
- - Iou Fried meat: 0.0
177
- - Iou Lamb: 0.0
178
- - Iou Sauce: 0.1344
179
- - Iou Crab: 0.0
180
- - Iou Fish: 0.0
181
- - Iou Shellfish: 0.0
182
- - Iou Shrimp: 0.0
183
- - Iou Soup: 0.0
184
- - Iou Bread: 0.3788
185
- - Iou Corn: 0.5467
186
- - Iou Hamburg: nan
187
- - Iou Pizza: 0.0
188
- - Iou hanamaki baozi: nan
189
- - Iou Wonton dumplings: 0.0
190
- - Iou Pasta: 0.0
191
- - Iou Noodles: 0.0849
192
- - Iou Rice: 0.4561
193
- - Iou Pie: 0.0216
194
- - Iou Tofu: nan
195
- - Iou Eggplant: nan
196
- - Iou Potato: 0.1776
197
- - Iou Garlic: 0.0
198
- - Iou Cauliflower: 0.0
199
- - Iou Tomato: 0.3098
200
- - Iou Kelp: nan
201
- - Iou Seaweed: nan
202
- - Iou Spring onion: 0.0
203
- - Iou Rape: 0.0
204
- - Iou Ginger: 0.0
205
- - Iou Okra: nan
206
- - Iou Lettuce: 0.0659
207
- - Iou Pumpkin: 0.0
208
- - Iou Cucumber: 0.0510
209
- - Iou White radish: 0.0
210
- - Iou Carrot: 0.5396
211
- - Iou Asparagus: 0.0
212
- - Iou Bamboo shoots: nan
213
- - Iou Broccoli: 0.4439
214
- - Iou Celery stick: 0.0
215
- - Iou Cilantro mint: 0.0124
216
- - Iou Snow peas: 0.0
217
- - Iou cabbage: 0.0
218
- - Iou Bean sprouts: nan
219
- - Iou Onion: 0.0
220
- - Iou Pepper: 0.0
221
- - Iou Green beans: 0.0
222
- - Iou French beans: 0.4446
223
- - Iou King oyster mushroom: nan
224
- - Iou Shiitake: 0.0
225
- - Iou Enoki mushroom: nan
226
- - Iou Oyster mushroom: nan
227
- - Iou White button mushroom: 0.0
228
- - Iou Salad: 0.0
229
- - Iou Other ingredients: 0.0
230
 
231
  ## Model description
232
 
@@ -257,18 +85,18 @@ The following hyperparameters were used during training:
257
 
258
  ### Training results
259
 
260
- | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy Candy | Accuracy Egg tart | Accuracy French fries | Accuracy Chocolate | Accuracy Biscuit | Accuracy Popcorn | Accuracy Pudding | Accuracy Ice cream | Accuracy Cheese butter | Accuracy Cake | Accuracy Wine | Accuracy Milkshake | Accuracy Coffee | Accuracy Juice | Accuracy Milk | Accuracy Tea | Accuracy Almond | Accuracy Red beans | Accuracy Cashew | Accuracy Dried cranberries | Accuracy Soy | Accuracy Walnut | Accuracy Peanut | Accuracy Egg | Accuracy Apple | Accuracy Date | Accuracy Apricot | Accuracy Avocado | Accuracy Banana | Accuracy Strawberry | Accuracy Cherry | Accuracy Blueberry | Accuracy Raspberry | Accuracy Mango | Accuracy Olives | Accuracy Peach | Accuracy Lemon | Accuracy Pear | Accuracy Fig | Accuracy Pineapple | Accuracy Grape | Accuracy Kiwi | Accuracy Melon | Accuracy Orange | Accuracy Watermelon | Accuracy Steak | Accuracy Pork | Accuracy Chicken duck | Accuracy Sausage | Accuracy Fried meat | Accuracy Lamb | Accuracy Sauce | Accuracy Crab | Accuracy Fish | Accuracy Shellfish | Accuracy Shrimp | Accuracy Soup | Accuracy Bread | Accuracy Corn | Accuracy Hamburg | Accuracy Pizza | Accuracy hanamaki baozi | Accuracy Wonton dumplings | Accuracy Pasta | Accuracy Noodles | Accuracy Rice | Accuracy Pie | Accuracy Tofu | Accuracy Eggplant | Accuracy Potato | Accuracy Garlic | Accuracy Cauliflower | Accuracy Tomato | Accuracy Kelp | Accuracy Seaweed | Accuracy Spring onion | Accuracy Rape | Accuracy Ginger | Accuracy Okra | Accuracy Lettuce | Accuracy Pumpkin | Accuracy Cucumber | Accuracy White radish | Accuracy Carrot | Accuracy Asparagus | Accuracy Bamboo shoots | Accuracy Broccoli | Accuracy Celery stick | Accuracy Cilantro mint | Accuracy Snow peas | Accuracy cabbage | Accuracy Bean sprouts | Accuracy Onion | Accuracy Pepper | Accuracy Green beans | Accuracy French beans | Accuracy King oyster mushroom | Accuracy Shiitake | Accuracy Enoki mushroom | Accuracy Oyster mushroom | Accuracy White button mushroom | Accuracy Salad | Accuracy Other ingredients | Iou Background | Iou Candy | Iou Egg tart | Iou French fries | Iou Chocolate | Iou Biscuit | Iou Popcorn | Iou Pudding | Iou Ice cream | Iou Cheese butter | Iou Cake | Iou Wine | Iou Milkshake | Iou Coffee | Iou Juice | Iou Milk | Iou Tea | Iou Almond | Iou Red beans | Iou Cashew | Iou Dried cranberries | Iou Soy | Iou Walnut | Iou Peanut | Iou Egg | Iou Apple | Iou Date | Iou Apricot | Iou Avocado | Iou Banana | Iou Strawberry | Iou Cherry | Iou Blueberry | Iou Raspberry | Iou Mango | Iou Olives | Iou Peach | Iou Lemon | Iou Pear | Iou Fig | Iou Pineapple | Iou Grape | Iou Kiwi | Iou Melon | Iou Orange | Iou Watermelon | Iou Steak | Iou Pork | Iou Chicken duck | Iou Sausage | Iou Fried meat | Iou Lamb | Iou Sauce | Iou Crab | Iou Fish | Iou Shellfish | Iou Shrimp | Iou Soup | Iou Bread | Iou Corn | Iou Hamburg | Iou Pizza | Iou hanamaki baozi | Iou Wonton dumplings | Iou Pasta | Iou Noodles | Iou Rice | Iou Pie | Iou Tofu | Iou Eggplant | Iou Potato | Iou Garlic | Iou Cauliflower | Iou Tomato | Iou Kelp | Iou Seaweed | Iou Spring onion | Iou Rape | Iou Ginger | Iou Okra | Iou Lettuce | Iou Pumpkin | Iou Cucumber | Iou White radish | Iou Carrot | Iou Asparagus | Iou Bamboo shoots | Iou Broccoli | Iou Celery stick | Iou Cilantro mint | Iou Snow peas | Iou cabbage | Iou Bean sprouts | Iou Onion | Iou Pepper | Iou Green beans | Iou French beans | Iou King oyster mushroom | Iou Shiitake | Iou Enoki mushroom | Iou Oyster mushroom | Iou White button mushroom | Iou Salad | Iou Other ingredients |
261
- |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------:|:--------------:|:-----------------:|:---------------------:|:------------------:|:----------------:|:----------------:|:----------------:|:------------------:|:----------------------:|:-------------:|:-------------:|:------------------:|:---------------:|:--------------:|:-------------:|:------------:|:---------------:|:------------------:|:---------------:|:--------------------------:|:------------:|:---------------:|:---------------:|:------------:|:--------------:|:-------------:|:----------------:|:----------------:|:---------------:|:-------------------:|:---------------:|:------------------:|:------------------:|:--------------:|:---------------:|:--------------:|:--------------:|:-------------:|:------------:|:------------------:|:--------------:|:-------------:|:--------------:|:---------------:|:-------------------:|:--------------:|:-------------:|:---------------------:|:----------------:|:-------------------:|:-------------:|:--------------:|:-------------:|:-------------:|:------------------:|:---------------:|:-------------:|:--------------:|:-------------:|:----------------:|:--------------:|:------------------------:|:-------------------------:|:--------------:|:----------------:|:-------------:|:------------:|:-------------:|:-----------------:|:---------------:|:---------------:|:--------------------:|:---------------:|:-------------:|:----------------:|:---------------------:|:-------------:|:---------------:|:-------------:|:----------------:|:----------------:|:-----------------:|:---------------------:|:---------------:|:------------------:|:----------------------:|:-----------------:|:---------------------:|:----------------------:|:------------------:|:-----------------:|:---------------------:|:--------------:|:---------------:|:--------------------:|:---------------------:|:-----------------------------:|:-----------------:|:-----------------------:|:------------------------:|:------------------------------:|:--------------:|:--------------------------:|:--------------:|:---------:|:------------:|:----------------:|:-------------:|:-----------:|:-----------:|:-----------:|:-------------:|:-----------------:|:--------:|:--------:|:-------------:|:----------:|:---------:|:--------:|:-------:|:----------:|:-------------:|:----------:|:---------------------:|:-------:|:----------:|:----------:|:-------:|:---------:|:--------:|:-----------:|:-----------:|:----------:|:--------------:|:----------:|:-------------:|:-------------:|:---------:|:----------:|:---------:|:---------:|:--------:|:-------:|:-------------:|:---------:|:--------:|:---------:|:----------:|:--------------:|:---------:|:--------:|:----------------:|:-----------:|:--------------:|:--------:|:---------:|:--------:|:--------:|:-------------:|:----------:|:--------:|:---------:|:--------:|:-----------:|:---------:|:-------------------:|:--------------------:|:---------:|:-----------:|:--------:|:-------:|:--------:|:------------:|:----------:|:----------:|:---------------:|:----------:|:--------:|:-----------:|:----------------:|:--------:|:----------:|:--------:|:-----------:|:-----------:|:------------:|:----------------:|:----------:|:-------------:|:-----------------:|:------------:|:----------------:|:-----------------:|:-------------:|:------------:|:----------------:|:---------:|:----------:|:---------------:|:----------------:|:------------------------:|:------------:|:------------------:|:-------------------:|:-------------------------:|:---------:|:---------------------:|
262
- | 2.9942 | 1.0 | 130 | 2.9276 | 0.0157 | 0.0439 | 0.1923 | nan | nan | nan | 0.0074 | 0.0 | 0.0051 | nan | 0.0 | 0.0043 | 0.0 | 0.0022 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | nan | nan | 0.0 | nan | nan | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0004 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0674 | 0.0254 | 0.6035 | 0.0 | 0.0 | 0.0 | 0.0005 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7081 | 0.1418 | nan | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0056 | 0.0034 | nan | nan | 0.3157 | 0.0 | 0.0 | 0.0372 | nan | nan | 0.0 | 0.0 | 0.0 | nan | 0.0248 | 0.0 | 0.0047 | 0.0 | 0.5461 | 0.0 | nan | 0.8757 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0005 | nan | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0071 | 0.0 | 0.0048 | nan | 0.0 | 0.0042 | 0.0 | 0.0021 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 | nan | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0004 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0567 | 0.0200 | 0.1814 | 0.0 | 0.0 | 0.0 | 0.0005 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2348 | 0.0879 | nan | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0055 | 0.0033 | nan | 0.0 | 0.0754 | 0.0 | 0.0 | 0.0343 | nan | nan | 0.0 | 0.0 | 0.0 | nan | 0.0204 | 0.0 | 0.0046 | 0.0 | 0.2160 | 0.0 | nan | 0.3144 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0005 | nan | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 |
263
- | 2.499 | 2.0 | 260 | 2.4282 | 0.0234 | 0.0566 | 0.2411 | nan | nan | nan | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0019 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | nan | nan | 0.0 | nan | nan | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3184 | 0.0098 | 0.6748 | 0.0 | 0.0 | 0.0 | 0.0050 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8102 | 0.3264 | nan | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0123 | 0.0000 | nan | nan | 0.2648 | 0.0 | 0.0 | 0.1984 | nan | nan | 0.0 | 0.0 | 0.0 | nan | 0.0058 | 0.0 | 0.0018 | 0.0 | 0.7864 | 0.0 | nan | 0.9428 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0002 | nan | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0019 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | nan | nan | 0.0 | nan | nan | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2004 | 0.0085 | 0.1904 | 0.0 | 0.0 | 0.0 | 0.0049 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2533 | 0.2684 | nan | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0120 | 0.0000 | nan | nan | 0.0798 | 0.0 | 0.0 | 0.1345 | nan | nan | 0.0 | 0.0 | 0.0 | nan | 0.0056 | 0.0 | 0.0018 | 0.0 | 0.3549 | 0.0 | nan | 0.3067 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0002 | nan | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 |
264
- | 2.2864 | 3.0 | 390 | 2.0222 | 0.0315 | 0.0668 | 0.2639 | nan | nan | nan | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0274 | 0.0 | 0.0001 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | nan | nan | 0.0 | nan | nan | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0009 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4212 | 0.0074 | 0.5674 | 0.0 | 0.0 | 0.0 | 0.0278 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8271 | 0.6221 | nan | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.1007 | 0.0001 | nan | nan | 0.4216 | 0.0 | 0.0 | 0.3613 | nan | nan | 0.0 | 0.0 | 0.0 | nan | 0.0030 | 0.0 | 0.0 | 0.0 | 0.7950 | 0.0 | nan | 0.9375 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0000 | 0.0 | 0.0231 | nan | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0264 | 0.0 | 0.0001 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | nan | nan | 0.0 | nan | nan | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0009 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2271 | 0.0069 | 0.1974 | 0.0 | 0.0 | 0.0 | 0.0258 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2921 | 0.5016 | nan | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0907 | 0.0001 | nan | nan | 0.1111 | 0.0 | 0.0 | 0.1978 | nan | nan | 0.0 | 0.0 | 0.0 | nan | 0.0029 | 0.0 | 0.0 | 0.0 | 0.4319 | 0.0 | nan | 0.3234 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0000 | 0.0 | 0.0227 | nan | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 |
265
- | 1.905 | 4.0 | 520 | 1.9140 | 0.0385 | 0.0788 | 0.2991 | nan | nan | nan | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.1371 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | nan | nan | 0.0 | nan | nan | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0036 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0001 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4552 | 0.0005 | 0.6890 | 0.0 | 0.0 | 0.0 | 0.0519 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7991 | 0.7101 | nan | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.4152 | 0.0 | nan | nan | 0.4644 | 0.0 | 0.0 | 0.3607 | nan | nan | 0.0 | 0.0 | 0.0 | nan | 0.0009 | 0.0 | 0.0 | 0.0 | 0.8803 | 0.0 | nan | 0.9656 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.1374 | nan | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.1285 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | nan | nan | 0.0 | nan | nan | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0036 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0001 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2663 | 0.0005 | 0.2170 | 0.0 | 0.0 | 0.0 | 0.0471 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3228 | 0.5485 | nan | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.3385 | 0.0 | nan | nan | 0.1305 | 0.0 | 0.0 | 0.1787 | nan | nan | 0.0 | 0.0 | 0.0 | nan | 0.0009 | 0.0 | 0.0 | 0.0 | 0.3855 | 0.0 | nan | 0.3162 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.1204 | nan | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 |
266
- | 2.0345 | 5.0 | 650 | 1.7634 | 0.0460 | 0.0899 | 0.3236 | nan | nan | nan | 0.0024 | 0.0 | 0.0 | nan | 0.0 | 0.2167 | 0.0 | 0.0012 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | nan | nan | 0.0 | nan | nan | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0122 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0003 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5472 | 0.0002 | 0.6359 | 0.0 | 0.0 | 0.0 | 0.1236 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8137 | 0.7439 | nan | 0.0 | nan | 0.0 | 0.0 | 0.0012 | 0.5087 | 0.0033 | nan | nan | 0.5049 | 0.0 | 0.0 | 0.5107 | nan | nan | 0.0 | 0.0 | 0.0 | nan | 0.0163 | 0.0 | 0.0014 | 0.0 | 0.8746 | 0.0 | nan | 0.9726 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.4339 | nan | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0024 | 0.0 | 0.0 | nan | 0.0 | 0.1786 | 0.0 | 0.0011 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | nan | nan | 0.0 | nan | nan | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0122 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0003 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2872 | 0.0002 | 0.2219 | 0.0 | 0.0 | 0.0 | 0.1041 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3577 | 0.5178 | nan | 0.0 | nan | 0.0 | 0.0 | 0.0012 | 0.3844 | 0.0032 | nan | nan | 0.1361 | 0.0 | 0.0 | 0.2411 | nan | nan | 0.0 | 0.0 | 0.0 | nan | 0.0154 | 0.0 | 0.0013 | 0.0 | 0.4571 | 0.0 | nan | 0.3375 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.3233 | nan | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 |
267
- | 1.9358 | 6.0 | 780 | 1.6950 | 0.0521 | 0.0978 | 0.3395 | nan | nan | nan | 0.0177 | 0.0 | 0.0 | nan | 0.0 | 0.3227 | 0.0 | 0.0020 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | nan | nan | 0.0 | nan | nan | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0294 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0053 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5861 | 0.0009 | 0.6474 | 0.0 | 0.0 | 0.0 | 0.1770 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7995 | 0.7529 | nan | 0.0 | nan | 0.0 | 0.0 | 0.0127 | 0.5519 | 0.0023 | nan | nan | 0.4938 | 0.0 | 0.0 | 0.6809 | nan | nan | 0.0 | 0.0 | 0.0 | nan | 0.0349 | 0.0 | 0.0074 | 0.0 | 0.8447 | 0.0 | nan | 0.9651 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.5930 | nan | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0166 | 0.0 | 0.0 | nan | 0.0 | 0.2424 | 0.0 | 0.0019 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | nan | nan | 0.0 | nan | nan | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0293 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0051 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3126 | 0.0009 | 0.2285 | 0.0 | 0.0 | 0.0 | 0.1337 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3654 | 0.5170 | nan | 0.0 | nan | 0.0 | 0.0 | 0.0127 | 0.4107 | 0.0022 | nan | nan | 0.1435 | 0.0 | 0.0 | 0.2982 | nan | nan | 0.0 | 0.0 | 0.0 | nan | 0.0309 | 0.0 | 0.0073 | 0.0 | 0.5130 | 0.0 | nan | 0.3837 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.4059 | nan | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 |
268
- | 2.2618 | 7.0 | 910 | 1.6316 | 0.0561 | 0.1029 | 0.3512 | nan | nan | nan | 0.0282 | 0.0 | 0.0 | nan | 0.0 | 0.3805 | 0.0 | 0.0306 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | nan | nan | 0.0 | nan | nan | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0516 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0298 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6237 | 0.0010 | 0.6296 | 0.0 | 0.0 | 0.0 | 0.1887 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8137 | 0.7823 | nan | 0.0 | nan | 0.0 | 0.0 | 0.0344 | 0.6540 | 0.0278 | nan | nan | 0.4327 | 0.0 | 0.0 | 0.6121 | nan | nan | 0.0 | 0.0 | 0.0 | nan | 0.0641 | 0.0 | 0.0294 | 0.0 | 0.8738 | 0.0 | nan | 0.9581 | 0.0 | 0.0014 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.6761 | nan | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0251 | 0.0 | 0.0 | nan | 0.0 | 0.2635 | 0.0 | 0.0262 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | nan | nan | 0.0 | nan | nan | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0511 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0284 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3261 | 0.0010 | 0.2476 | 0.0 | 0.0 | 0.0 | 0.1381 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3627 | 0.5086 | nan | 0.0 | nan | 0.0 | 0.0 | 0.0344 | 0.4473 | 0.0260 | nan | nan | 0.1719 | 0.0 | 0.0 | 0.2870 | nan | nan | 0.0 | 0.0 | 0.0 | nan | 0.0571 | 0.0 | 0.0288 | 0.0 | 0.4822 | 0.0 | nan | 0.4253 | 0.0 | 0.0014 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.4380 | nan | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 |
269
- | 1.7526 | 8.0 | 1040 | 1.6168 | 0.0587 | 0.1057 | 0.3536 | nan | nan | nan | 0.0762 | 0.0 | 0.0 | nan | 0.0 | 0.3490 | 0.0 | 0.0232 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | nan | nan | 0.0 | nan | nan | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0762 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0573 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6438 | 0.0011 | 0.6572 | 0.0 | 0.0 | 0.0 | 0.1949 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7777 | 0.7634 | nan | 0.0 | nan | 0.0 | 0.0 | 0.0454 | 0.5992 | 0.0115 | nan | nan | 0.5007 | 0.0 | 0.0 | 0.6932 | nan | nan | 0.0 | 0.0 | 0.0 | nan | 0.1100 | 0.0 | 0.0445 | 0.0 | 0.8527 | 0.0 | nan | 0.9651 | 0.0 | 0.0086 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.6843 | nan | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0716 | 0.0 | 0.0 | nan | 0.0 | 0.2649 | 0.0 | 0.0206 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | nan | nan | 0.0 | nan | nan | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0752 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0524 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3209 | 0.0011 | 0.2411 | 0.0 | 0.0 | 0.0 | 0.1354 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3954 | 0.5393 | nan | 0.0 | nan | 0.0 | 0.0 | 0.0454 | 0.4272 | 0.0111 | nan | nan | 0.1722 | 0.0 | 0.0 | 0.2829 | nan | nan | 0.0 | 0.0 | 0.0 | nan | 0.0850 | 0.0 | 0.0433 | 0.0 | 0.5333 | 0.0 | nan | 0.4235 | 0.0 | 0.0085 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.4284 | nan | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 |
270
- | 1.7176 | 9.0 | 1170 | 1.6061 | 0.0598 | 0.1068 | 0.3582 | nan | nan | nan | 0.0637 | 0.0 | 0.0 | nan | 0.0 | 0.3684 | 0.0 | 0.0268 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | nan | nan | 0.0 | nan | nan | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0759 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0600 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6416 | 0.0003 | 0.6461 | 0.0 | 0.0 | 0.0 | 0.1933 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8102 | 0.7791 | nan | 0.0 | nan | 0.0 | 0.0 | 0.0672 | 0.6338 | 0.0135 | nan | nan | 0.5045 | 0.0 | 0.0 | 0.6435 | nan | nan | 0.0 | 0.0 | 0.0 | nan | 0.1030 | 0.0 | 0.0538 | 0.0 | 0.8572 | 0.0 | nan | 0.9677 | 0.0 | 0.0108 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.7011 | nan | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0573 | 0.0 | 0.0 | nan | 0.0 | 0.2684 | 0.0 | 0.0241 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | nan | nan | 0.0 | nan | nan | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0749 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0540 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3269 | 0.0003 | 0.2425 | 0.0 | 0.0 | 0.0 | 0.1367 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3843 | 0.5203 | nan | 0.0 | nan | 0.0 | 0.0 | 0.0671 | 0.4458 | 0.0130 | nan | nan | 0.1695 | 0.0 | 0.0 | 0.3028 | nan | nan | 0.0 | 0.0 | 0.0 | nan | 0.0844 | 0.0 | 0.0508 | 0.0 | 0.5497 | 0.0 | nan | 0.4357 | 0.0 | 0.0106 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.4425 | nan | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 |
271
- | 1.5898 | 10.0 | 1300 | 1.6018 | 0.0608 | 0.1072 | 0.3589 | nan | nan | nan | 0.0813 | 0.0 | 0.0 | nan | 0.0 | 0.3875 | 0.0 | 0.0576 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | nan | nan | 0.0 | nan | nan | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0771 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0515 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5884 | 0.0003 | 0.6623 | 0.0 | 0.0 | 0.0 | 0.1892 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8206 | 0.7645 | nan | 0.0 | nan | 0.0 | 0.0 | 0.0852 | 0.6730 | 0.0233 | nan | nan | 0.4689 | 0.0 | 0.0 | 0.6533 | nan | nan | 0.0 | 0.0 | 0.0 | nan | 0.0739 | 0.0 | 0.0540 | 0.0 | 0.8574 | 0.0 | nan | 0.9624 | 0.0 | 0.0126 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.7100 | nan | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0723 | 0.0 | 0.0 | nan | 0.0 | 0.2640 | 0.0 | 0.0479 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | nan | nan | 0.0 | nan | nan | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0755 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0473 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3273 | 0.0003 | 0.2441 | 0.0 | 0.0 | 0.0 | 0.1344 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3788 | 0.5467 | nan | 0.0 | nan | 0.0 | 0.0 | 0.0849 | 0.4561 | 0.0216 | nan | nan | 0.1776 | 0.0 | 0.0 | 0.3098 | nan | nan | 0.0 | 0.0 | 0.0 | nan | 0.0659 | 0.0 | 0.0510 | 0.0 | 0.5396 | 0.0 | nan | 0.4439 | 0.0 | 0.0124 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.4446 | nan | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 |
272
 
273
 
274
  ### Framework versions
 
15
 
16
  This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on an unknown dataset.
17
  It achieves the following results on the evaluation set:
18
+ - Loss: 0.3204
19
+ - Mean Iou: 0.3879
20
+ - Mean Accuracy: 0.4943
21
+ - Overall Accuracy: 0.7036
22
  - Accuracy Background: nan
23
+ - Accuracy Hat: 0.0
24
+ - Accuracy Hair: 0.8304
25
+ - Accuracy Sunglasses: 0.0
26
+ - Accuracy Upper-clothes: 0.8535
27
+ - Accuracy Skirt: 0.6956
28
+ - Accuracy Pants: 0.8303
29
+ - Accuracy Dress: 0.4990
30
+ - Accuracy Belt: 0.0
31
+ - Accuracy Left-shoe: 0.1708
32
+ - Accuracy Right-shoe: 0.3445
33
+ - Accuracy Face: 0.8594
34
+ - Accuracy Left-leg: 0.7149
35
+ - Accuracy Right-leg: 0.7322
36
+ - Accuracy Left-arm: 0.6598
37
+ - Accuracy Right-arm: 0.6786
38
+ - Accuracy Bag: 0.5344
39
+ - Accuracy Scarf: 0.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40
  - Iou Background: 0.0
41
+ - Iou Hat: 0.0
42
+ - Iou Hair: 0.7126
43
+ - Iou Sunglasses: 0.0
44
+ - Iou Upper-clothes: 0.6681
45
+ - Iou Skirt: 0.5240
46
+ - Iou Pants: 0.6700
47
+ - Iou Dress: 0.4029
48
+ - Iou Belt: 0.0
49
+ - Iou Left-shoe: 0.1600
50
+ - Iou Right-shoe: 0.2739
51
+ - Iou Face: 0.7169
52
+ - Iou Left-leg: 0.5757
53
+ - Iou Right-leg: 0.6008
54
+ - Iou Left-arm: 0.5868
55
+ - Iou Right-arm: 0.6012
56
+ - Iou Bag: 0.4902
57
+ - Iou Scarf: 0.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58
 
59
  ## Model description
60
 
 
85
 
86
  ### Training results
87
 
88
+ | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy Hat | Accuracy Hair | Accuracy Sunglasses | Accuracy Upper-clothes | Accuracy Skirt | Accuracy Pants | Accuracy Dress | Accuracy Belt | Accuracy Left-shoe | Accuracy Right-shoe | Accuracy Face | Accuracy Left-leg | Accuracy Right-leg | Accuracy Left-arm | Accuracy Right-arm | Accuracy Bag | Accuracy Scarf | Iou Background | Iou Hat | Iou Hair | Iou Sunglasses | Iou Upper-clothes | Iou Skirt | Iou Pants | Iou Dress | Iou Belt | Iou Left-shoe | Iou Right-shoe | Iou Face | Iou Left-leg | Iou Right-leg | Iou Left-arm | Iou Right-arm | Iou Bag | Iou Scarf |
89
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------:|:------------:|:-------------:|:-------------------:|:----------------------:|:--------------:|:--------------:|:--------------:|:-------------:|:------------------:|:-------------------:|:-------------:|:-----------------:|:------------------:|:-----------------:|:------------------:|:------------:|:--------------:|:--------------:|:-------:|:--------:|:--------------:|:-----------------:|:---------:|:---------:|:---------:|:--------:|:-------------:|:--------------:|:--------:|:------------:|:-------------:|:------------:|:-------------:|:-------:|:---------:|
90
+ | 1.5584 | 1.0 | 100 | 1.4751 | 0.1357 | 0.2382 | 0.4526 | nan | 0.0 | 0.8771 | 0.0 | 0.8883 | 0.0443 | 0.7221 | 0.0035 | 0.0 | 0.0187 | 0.0055 | 0.2572 | 0.5884 | 0.5612 | 0.0822 | 0.0013 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5636 | 0.0 | 0.3813 | 0.0433 | 0.3814 | 0.0035 | 0.0 | 0.0182 | 0.0055 | 0.2523 | 0.3602 | 0.3582 | 0.0746 | 0.0013 | 0.0 | 0.0 |
91
+ | 1.1073 | 2.0 | 200 | 1.0997 | 0.2194 | 0.3308 | 0.5583 | nan | 0.0 | 0.9122 | 0.0 | 0.8933 | 0.5007 | 0.6982 | 0.1416 | 0.0 | 0.0076 | 0.0436 | 0.7573 | 0.6194 | 0.7115 | 0.2770 | 0.0608 | 0.0012 | 0.0 | 0.0 | 0.0 | 0.6610 | 0.0 | 0.4693 | 0.3429 | 0.5229 | 0.1246 | 0.0 | 0.0076 | 0.0416 | 0.6491 | 0.4038 | 0.4308 | 0.2338 | 0.0605 | 0.0012 | 0.0 |
92
+ | 0.805 | 3.0 | 300 | 0.7604 | 0.2466 | 0.3515 | 0.5861 | nan | 0.0 | 0.8500 | 0.0 | 0.8839 | 0.4934 | 0.8517 | 0.2381 | 0.0 | 0.0038 | 0.0406 | 0.8209 | 0.5776 | 0.7025 | 0.2485 | 0.2341 | 0.0298 | 0.0 | 0.0 | 0.0 | 0.6900 | 0.0 | 0.5378 | 0.3542 | 0.5424 | 0.2035 | 0.0 | 0.0038 | 0.0391 | 0.6827 | 0.4027 | 0.4848 | 0.2384 | 0.2289 | 0.0296 | 0.0 |
93
+ | 0.604 | 4.0 | 400 | 0.5498 | 0.2906 | 0.3944 | 0.6189 | nan | 0.0 | 0.8108 | 0.0 | 0.8788 | 0.6810 | 0.7835 | 0.2571 | 0.0 | 0.0016 | 0.1009 | 0.8612 | 0.6496 | 0.6929 | 0.4317 | 0.4043 | 0.1522 | 0.0 | 0.0 | 0.0 | 0.6910 | 0.0 | 0.5894 | 0.4338 | 0.6222 | 0.2234 | 0.0 | 0.0016 | 0.0918 | 0.6875 | 0.4402 | 0.5096 | 0.4032 | 0.3877 | 0.1492 | 0.0 |
94
+ | 0.4334 | 5.0 | 500 | 0.4440 | 0.3219 | 0.4196 | 0.6428 | nan | 0.0 | 0.8265 | 0.0 | 0.8612 | 0.4725 | 0.8254 | 0.4861 | 0.0 | 0.0033 | 0.1673 | 0.8410 | 0.6689 | 0.6548 | 0.5207 | 0.5088 | 0.2962 | 0.0 | 0.0 | 0.0 | 0.6959 | 0.0 | 0.6233 | 0.3809 | 0.6130 | 0.3510 | 0.0 | 0.0033 | 0.1437 | 0.7028 | 0.4987 | 0.5323 | 0.4820 | 0.4809 | 0.2858 | 0.0 |
95
+ | 0.4213 | 6.0 | 600 | 0.3817 | 0.3491 | 0.4549 | 0.6658 | nan | 0.0 | 0.8247 | 0.0 | 0.8762 | 0.7055 | 0.7855 | 0.3145 | 0.0 | 0.0273 | 0.2536 | 0.8611 | 0.6931 | 0.7257 | 0.6254 | 0.6281 | 0.4132 | 0.0 | 0.0 | 0.0 | 0.7044 | 0.0 | 0.6379 | 0.4727 | 0.6504 | 0.2752 | 0.0 | 0.0272 | 0.2056 | 0.7066 | 0.5298 | 0.5651 | 0.5557 | 0.5634 | 0.3902 | 0.0 |
96
+ | 0.3325 | 7.0 | 700 | 0.3484 | 0.3690 | 0.4758 | 0.6840 | nan | 0.0 | 0.8352 | 0.0 | 0.8333 | 0.6651 | 0.8321 | 0.4643 | 0.0 | 0.0780 | 0.3248 | 0.8554 | 0.6926 | 0.7224 | 0.6461 | 0.6486 | 0.4906 | 0.0 | 0.0 | 0.0 | 0.7079 | 0.0 | 0.6573 | 0.4848 | 0.6432 | 0.3743 | 0.0 | 0.0765 | 0.2516 | 0.7128 | 0.5528 | 0.5816 | 0.5693 | 0.5773 | 0.4521 | 0.0 |
97
+ | 0.2556 | 8.0 | 800 | 0.3384 | 0.3795 | 0.4845 | 0.6971 | nan | 0.0 | 0.8404 | 0.0 | 0.8723 | 0.6558 | 0.8311 | 0.4614 | 0.0 | 0.1270 | 0.3250 | 0.8533 | 0.6978 | 0.7209 | 0.6525 | 0.6619 | 0.5364 | 0.0 | 0.0 | 0.0 | 0.7130 | 0.0 | 0.6572 | 0.5012 | 0.6634 | 0.3790 | 0.0 | 0.1220 | 0.2599 | 0.7153 | 0.5627 | 0.5908 | 0.5849 | 0.5933 | 0.4873 | 0.0 |
98
+ | 0.3337 | 9.0 | 900 | 0.3201 | 0.3806 | 0.4846 | 0.6943 | nan | 0.0 | 0.8309 | 0.0 | 0.8803 | 0.5781 | 0.8338 | 0.4711 | 0.0 | 0.1599 | 0.3381 | 0.8563 | 0.7194 | 0.7205 | 0.6508 | 0.6578 | 0.5406 | 0.0 | 0.0 | 0.0 | 0.7122 | 0.0 | 0.6504 | 0.4790 | 0.6587 | 0.3859 | 0.0 | 0.1507 | 0.2691 | 0.7173 | 0.5748 | 0.5947 | 0.5816 | 0.5871 | 0.4893 | 0.0 |
99
+ | 0.2843 | 10.0 | 1000 | 0.3204 | 0.3879 | 0.4943 | 0.7036 | nan | 0.0 | 0.8304 | 0.0 | 0.8535 | 0.6956 | 0.8303 | 0.4990 | 0.0 | 0.1708 | 0.3445 | 0.8594 | 0.7149 | 0.7322 | 0.6598 | 0.6786 | 0.5344 | 0.0 | 0.0 | 0.0 | 0.7126 | 0.0 | 0.6681 | 0.5240 | 0.6700 | 0.4029 | 0.0 | 0.1600 | 0.2739 | 0.7169 | 0.5757 | 0.6008 | 0.5868 | 0.6012 | 0.4902 | 0.0 |
100
 
101
 
102
  ### Framework versions
config.json CHANGED
@@ -28,218 +28,46 @@
28
  256
29
  ],
30
  "id2label": {
31
- "0": "background",
32
- "1": "candy",
33
- "2": "egg tart",
34
- "3": "french fries",
35
- "4": "chocolate",
36
- "5": "biscuit",
37
- "6": "popcorn",
38
- "7": "pudding",
39
- "8": "ice cream",
40
- "9": "cheese butter",
41
- "10": "cake",
42
- "11": "wine",
43
- "12": "milkshake",
44
- "13": "coffee",
45
- "14": "juice",
46
- "15": "milk",
47
- "16": "tea",
48
- "17": "almond",
49
- "18": "red beans",
50
- "19": "cashew",
51
- "20": "dried cranberries",
52
- "21": "soy",
53
- "22": "walnut",
54
- "23": "peanut",
55
- "24": "egg",
56
- "25": "apple",
57
- "26": "date",
58
- "27": "apricot",
59
- "28": "avocado",
60
- "29": "banana",
61
- "30": "strawberry",
62
- "31": "cherry",
63
- "32": "blueberry",
64
- "33": "raspberry",
65
- "34": "mango",
66
- "35": "olives",
67
- "36": "peach",
68
- "37": "lemon",
69
- "38": "pear",
70
- "39": "fig",
71
- "40": "pineapple",
72
- "41": "grape",
73
- "42": "kiwi",
74
- "43": "melon",
75
- "44": "orange",
76
- "45": "watermelon",
77
- "46": "steak",
78
- "47": "pork",
79
- "48": "chicken duck",
80
- "49": "sausage",
81
- "50": "fried meat",
82
- "51": "lamb",
83
- "52": "sauce",
84
- "53": "crab",
85
- "54": "fish",
86
- "55": "shellfish",
87
- "56": "shrimp",
88
- "57": "soup",
89
- "58": "bread",
90
- "59": "corn",
91
- "60": "hamburg",
92
- "61": "pizza",
93
- "62": " hanamaki baozi",
94
- "63": "wonton dumplings",
95
- "64": "pasta",
96
- "65": "noodles",
97
- "66": "rice",
98
- "67": "pie",
99
- "68": "tofu",
100
- "69": "eggplant",
101
- "70": "potato",
102
- "71": "garlic",
103
- "72": "cauliflower",
104
- "73": "tomato",
105
- "74": "kelp",
106
- "75": "seaweed",
107
- "76": "spring onion",
108
- "77": "rape",
109
- "78": "ginger",
110
- "79": "okra",
111
- "80": "lettuce",
112
- "81": "pumpkin",
113
- "82": "cucumber",
114
- "83": "white radish",
115
- "84": "carrot",
116
- "85": "asparagus",
117
- "86": "bamboo shoots",
118
- "87": "broccoli",
119
- "88": "celery stick",
120
- "89": "cilantro mint",
121
- "90": "snow peas",
122
- "91": " cabbage",
123
- "92": "bean sprouts",
124
- "93": "onion",
125
- "94": "pepper",
126
- "95": "green beans",
127
- "96": "French beans",
128
- "97": "king oyster mushroom",
129
- "98": "shiitake",
130
- "99": "enoki mushroom",
131
- "100": "oyster mushroom",
132
- "101": "white button mushroom",
133
- "102": "salad",
134
- "103": "other ingredients"
135
  },
136
  "image_size": 224,
137
  "initializer_range": 0.02,
138
  "label2id": {
139
- " cabbage": 91,
140
- " hanamaki baozi": 62,
141
- "French beans": 96,
142
- "almond": 17,
143
- "apple": 25,
144
- "apricot": 27,
145
- "asparagus": 85,
146
- "avocado": 28,
147
- "background": 0,
148
- "bamboo shoots": 86,
149
- "banana": 29,
150
- "bean sprouts": 92,
151
- "biscuit": 5,
152
- "blueberry": 32,
153
- "bread": 58,
154
- "broccoli": 87,
155
- "cake": 10,
156
- "candy": 1,
157
- "carrot": 84,
158
- "cashew": 19,
159
- "cauliflower": 72,
160
- "celery stick": 88,
161
- "cheese butter": 9,
162
- "cherry": 31,
163
- "chicken duck": 48,
164
- "chocolate": 4,
165
- "cilantro mint": 89,
166
- "coffee": 13,
167
- "corn": 59,
168
- "crab": 53,
169
- "cucumber": 82,
170
- "date": 26,
171
- "dried cranberries": 20,
172
- "egg": 24,
173
- "egg tart": 2,
174
- "eggplant": 69,
175
- "enoki mushroom": 99,
176
- "fig": 39,
177
- "fish": 54,
178
- "french fries": 3,
179
- "fried meat": 50,
180
- "garlic": 71,
181
- "ginger": 78,
182
- "grape": 41,
183
- "green beans": 95,
184
- "hamburg": 60,
185
- "ice cream": 8,
186
- "juice": 14,
187
- "kelp": 74,
188
- "king oyster mushroom": 97,
189
- "kiwi": 42,
190
- "lamb": 51,
191
- "lemon": 37,
192
- "lettuce": 80,
193
- "mango": 34,
194
- "melon": 43,
195
- "milk": 15,
196
- "milkshake": 12,
197
- "noodles": 65,
198
- "okra": 79,
199
- "olives": 35,
200
- "onion": 93,
201
- "orange": 44,
202
- "other ingredients": 103,
203
- "oyster mushroom": 100,
204
- "pasta": 64,
205
- "peach": 36,
206
- "peanut": 23,
207
- "pear": 38,
208
- "pepper": 94,
209
- "pie": 67,
210
- "pineapple": 40,
211
- "pizza": 61,
212
- "popcorn": 6,
213
- "pork": 47,
214
- "potato": 70,
215
- "pudding": 7,
216
- "pumpkin": 81,
217
- "rape": 77,
218
- "raspberry": 33,
219
- "red beans": 18,
220
- "rice": 66,
221
- "salad": 102,
222
- "sauce": 52,
223
- "sausage": 49,
224
- "seaweed": 75,
225
- "shellfish": 55,
226
- "shiitake": 98,
227
- "shrimp": 56,
228
- "snow peas": 90,
229
- "soup": 57,
230
- "soy": 21,
231
- "spring onion": 76,
232
- "steak": 46,
233
- "strawberry": 30,
234
- "tea": 16,
235
- "tofu": 68,
236
- "tomato": 73,
237
- "walnut": 22,
238
- "watermelon": 45,
239
- "white button mushroom": 101,
240
- "white radish": 83,
241
- "wine": 11,
242
- "wonton dumplings": 63
243
  },
244
  "layer_norm_eps": 1e-06,
245
  "mlp_ratios": [
 
28
  256
29
  ],
30
  "id2label": {
31
+ "0": "Background",
32
+ "1": "Hat",
33
+ "2": "Hair",
34
+ "3": "Sunglasses",
35
+ "4": "Upper-clothes",
36
+ "5": "Skirt",
37
+ "6": "Pants",
38
+ "7": "Dress",
39
+ "8": "Belt",
40
+ "9": "Left-shoe",
41
+ "10": "Right-shoe",
42
+ "11": "Face",
43
+ "12": "Left-leg",
44
+ "13": "Right-leg",
45
+ "14": "Left-arm",
46
+ "15": "Right-arm",
47
+ "16": "Bag",
48
+ "17": "Scarf"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49
  },
50
  "image_size": 224,
51
  "initializer_range": 0.02,
52
  "label2id": {
53
+ "Background": 0,
54
+ "Bag": 16,
55
+ "Belt": 8,
56
+ "Dress": 7,
57
+ "Face": 11,
58
+ "Hair": 2,
59
+ "Hat": 1,
60
+ "Left-arm": 14,
61
+ "Left-leg": 12,
62
+ "Left-shoe": 9,
63
+ "Pants": 6,
64
+ "Right-arm": 15,
65
+ "Right-leg": 13,
66
+ "Right-shoe": 10,
67
+ "Scarf": 17,
68
+ "Skirt": 5,
69
+ "Sunglasses": 3,
70
+ "Upper-clothes": 4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71
  },
72
  "layer_norm_eps": 1e-06,
73
  "mlp_ratios": [
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:e449042e2c9296d38f2621f258f087c9c9cd750591a53803bb7a2942dc71b558
3
- size 14989656
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2c9ebf6f97d040acfcdfbb4969a1e510d9ae2e818bbc2e5d40c5bd511e511778
3
+ size 14901232
preprocessor_config.json CHANGED
@@ -17,7 +17,7 @@
17
  "resample": 2,
18
  "rescale_factor": 0.00392156862745098,
19
  "size": {
20
- "height": 256,
21
- "width": 256
22
  }
23
  }
 
17
  "resample": 2,
18
  "rescale_factor": 0.00392156862745098,
19
  "size": {
20
+ "height": 512,
21
+ "width": 512
22
  }
23
  }
runs/Apr13_17-20-43_1de1ffca588a/events.out.tfevents.1713028852.1de1ffca588a.5437.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4c9f40ccc9a2d4c6402775ffd40bb38d2bc61c213ae43ad03de94691c626a130
3
+ size 5197
runs/Apr13_17-25-21_1de1ffca588a/events.out.tfevents.1713029133.1de1ffca588a.5437.1 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:91147479fdd7e6aa3383855c0c9704a91725dab301031b0d15aecf323d245d3f
3
+ size 5197
runs/Apr13_17-29-57_1de1ffca588a/events.out.tfevents.1713029406.1de1ffca588a.5437.2 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5744e731fadf2ca2aab537c89b17b961054cc99793423d71ddb5c3284b4c12a7
3
+ size 5197
runs/Apr13_17-37-04_1de1ffca588a/events.out.tfevents.1713029837.1de1ffca588a.5437.3 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ab97b99c77a108513c3d1f8ba9a2555bbe32254e69b9badc45bcc34b7426fd60
3
+ size 5197
runs/Apr13_17-38-05_1de1ffca588a/events.out.tfevents.1713029893.1de1ffca588a.5437.4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c70ace649a9cede685a207d30e3e40b905b880e340ca5ab0b9bbcf1a7d83f8a4
3
+ size 5197
runs/Apr13_17-53-19_1de1ffca588a/events.out.tfevents.1713030809.1de1ffca588a.14450.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e8fe7da4058a7f080601fffa993c6c2bae1f9ae5143e565fac304f479922b9c2
3
+ size 241543
training_args.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:443151d3c58502dfdd9e39e9ce7fe842d9274479daf532bb000de750e838bfad
3
  size 4920
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:acd5c8443412ec7dfbaf7d43ae5d5bf056ed7b1d06c4f430935f9d498febb191
3
  size 4920