raks87 commited on
Commit
1329fb5
1 Parent(s): b9f88db

Model save

Browse files
README.md ADDED
@@ -0,0 +1,141 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ base_model: nvidia/mit-b0
4
+ tags:
5
+ - generated_from_trainer
6
+ model-index:
7
+ - name: mit-b0-finetuned-sidewalk-semantic
8
+ results: []
9
+ ---
10
+
11
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
+ should probably proofread and complete it, then remove this comment. -->
13
+
14
+ # mit-b0-finetuned-sidewalk-semantic
15
+
16
+ This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on an unknown dataset.
17
+ It achieves the following results on the evaluation set:
18
+ - Loss: 0.7584
19
+ - Mean Iou: 0.1932
20
+ - Mean Accuracy: 0.2342
21
+ - Overall Accuracy: 0.8034
22
+ - Accuracy Unlabeled: nan
23
+ - Accuracy Flat-road: 0.7939
24
+ - Accuracy Flat-sidewalk: 0.9534
25
+ - Accuracy Flat-crosswalk: 0.0000
26
+ - Accuracy Flat-cyclinglane: 0.7630
27
+ - Accuracy Flat-parkingdriveway: 0.3561
28
+ - Accuracy Flat-railtrack: 0.0
29
+ - Accuracy Flat-curb: 0.2446
30
+ - Accuracy Human-person: 0.0018
31
+ - Accuracy Human-rider: 0.0
32
+ - Accuracy Vehicle-car: 0.9007
33
+ - Accuracy Vehicle-truck: 0.0
34
+ - Accuracy Vehicle-bus: 0.0
35
+ - Accuracy Vehicle-tramtrain: 0.0
36
+ - Accuracy Vehicle-motorcycle: 0.0
37
+ - Accuracy Vehicle-bicycle: 0.0
38
+ - Accuracy Vehicle-caravan: 0.0
39
+ - Accuracy Vehicle-cartrailer: 0.0
40
+ - Accuracy Construction-building: 0.9194
41
+ - Accuracy Construction-door: 0.0
42
+ - Accuracy Construction-wall: 0.0706
43
+ - Accuracy Construction-fenceguardrail: 0.0
44
+ - Accuracy Construction-bridge: 0.0
45
+ - Accuracy Construction-tunnel: nan
46
+ - Accuracy Construction-stairs: 0.0
47
+ - Accuracy Object-pole: 0.0018
48
+ - Accuracy Object-trafficsign: 0.0
49
+ - Accuracy Object-trafficlight: 0.0
50
+ - Accuracy Nature-vegetation: 0.9304
51
+ - Accuracy Nature-terrain: 0.8467
52
+ - Accuracy Sky: 0.9472
53
+ - Accuracy Void-ground: 0.0
54
+ - Accuracy Void-dynamic: 0.0
55
+ - Accuracy Void-static: 0.0004
56
+ - Accuracy Void-unclear: 0.0
57
+ - Iou Unlabeled: nan
58
+ - Iou Flat-road: 0.6083
59
+ - Iou Flat-sidewalk: 0.8277
60
+ - Iou Flat-crosswalk: 0.0000
61
+ - Iou Flat-cyclinglane: 0.6702
62
+ - Iou Flat-parkingdriveway: 0.2581
63
+ - Iou Flat-railtrack: 0.0
64
+ - Iou Flat-curb: 0.2113
65
+ - Iou Human-person: 0.0018
66
+ - Iou Human-rider: 0.0
67
+ - Iou Vehicle-car: 0.7545
68
+ - Iou Vehicle-truck: 0.0
69
+ - Iou Vehicle-bus: 0.0
70
+ - Iou Vehicle-tramtrain: 0.0
71
+ - Iou Vehicle-motorcycle: 0.0
72
+ - Iou Vehicle-bicycle: 0.0
73
+ - Iou Vehicle-caravan: 0.0
74
+ - Iou Vehicle-cartrailer: 0.0
75
+ - Iou Construction-building: 0.6531
76
+ - Iou Construction-door: 0.0
77
+ - Iou Construction-wall: 0.0652
78
+ - Iou Construction-fenceguardrail: 0.0
79
+ - Iou Construction-bridge: 0.0
80
+ - Iou Construction-tunnel: nan
81
+ - Iou Construction-stairs: 0.0
82
+ - Iou Object-pole: 0.0018
83
+ - Iou Object-trafficsign: 0.0
84
+ - Iou Object-trafficlight: 0.0
85
+ - Iou Nature-vegetation: 0.8060
86
+ - Iou Nature-terrain: 0.6540
87
+ - Iou Sky: 0.8649
88
+ - Iou Void-ground: 0.0
89
+ - Iou Void-dynamic: 0.0
90
+ - Iou Void-static: 0.0003
91
+ - Iou Void-unclear: 0.0
92
+
93
+ ## Model description
94
+
95
+ More information needed
96
+
97
+ ## Intended uses & limitations
98
+
99
+ More information needed
100
+
101
+ ## Training and evaluation data
102
+
103
+ More information needed
104
+
105
+ ## Training procedure
106
+
107
+ ### Training hyperparameters
108
+
109
+ The following hyperparameters were used during training:
110
+ - learning_rate: 5e-05
111
+ - train_batch_size: 2
112
+ - eval_batch_size: 2
113
+ - seed: 42
114
+ - gradient_accumulation_steps: 4
115
+ - total_train_batch_size: 8
116
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
117
+ - lr_scheduler_type: linear
118
+ - num_epochs: 10
119
+
120
+ ### Training results
121
+
122
+ | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Flat-road | Accuracy Flat-sidewalk | Accuracy Flat-crosswalk | Accuracy Flat-cyclinglane | Accuracy Flat-parkingdriveway | Accuracy Flat-railtrack | Accuracy Flat-curb | Accuracy Human-person | Accuracy Human-rider | Accuracy Vehicle-car | Accuracy Vehicle-truck | Accuracy Vehicle-bus | Accuracy Vehicle-tramtrain | Accuracy Vehicle-motorcycle | Accuracy Vehicle-bicycle | Accuracy Vehicle-caravan | Accuracy Vehicle-cartrailer | Accuracy Construction-building | Accuracy Construction-door | Accuracy Construction-wall | Accuracy Construction-fenceguardrail | Accuracy Construction-bridge | Accuracy Construction-tunnel | Accuracy Construction-stairs | Accuracy Object-pole | Accuracy Object-trafficsign | Accuracy Object-trafficlight | Accuracy Nature-vegetation | Accuracy Nature-terrain | Accuracy Sky | Accuracy Void-ground | Accuracy Void-dynamic | Accuracy Void-static | Accuracy Void-unclear | Iou Unlabeled | Iou Flat-road | Iou Flat-sidewalk | Iou Flat-crosswalk | Iou Flat-cyclinglane | Iou Flat-parkingdriveway | Iou Flat-railtrack | Iou Flat-curb | Iou Human-person | Iou Human-rider | Iou Vehicle-car | Iou Vehicle-truck | Iou Vehicle-bus | Iou Vehicle-tramtrain | Iou Vehicle-motorcycle | Iou Vehicle-bicycle | Iou Vehicle-caravan | Iou Vehicle-cartrailer | Iou Construction-building | Iou Construction-door | Iou Construction-wall | Iou Construction-fenceguardrail | Iou Construction-bridge | Iou Construction-tunnel | Iou Construction-stairs | Iou Object-pole | Iou Object-trafficsign | Iou Object-trafficlight | Iou Nature-vegetation | Iou Nature-terrain | Iou Sky | Iou Void-ground | Iou Void-dynamic | Iou Void-static | Iou Void-unclear |
123
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:------------------:|:----------------------:|:-----------------------:|:-------------------------:|:-----------------------------:|:-----------------------:|:------------------:|:---------------------:|:--------------------:|:--------------------:|:----------------------:|:--------------------:|:--------------------------:|:---------------------------:|:------------------------:|:------------------------:|:---------------------------:|:------------------------------:|:--------------------------:|:--------------------------:|:------------------------------------:|:----------------------------:|:----------------------------:|:----------------------------:|:--------------------:|:---------------------------:|:----------------------------:|:--------------------------:|:-----------------------:|:------------:|:--------------------:|:---------------------:|:--------------------:|:---------------------:|:-------------:|:-------------:|:-----------------:|:------------------:|:--------------------:|:------------------------:|:------------------:|:-------------:|:----------------:|:---------------:|:---------------:|:-----------------:|:---------------:|:---------------------:|:----------------------:|:-------------------:|:-------------------:|:----------------------:|:-------------------------:|:---------------------:|:---------------------:|:-------------------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:---------------:|:----------------------:|:-----------------------:|:---------------------:|:------------------:|:-------:|:---------------:|:----------------:|:---------------:|:----------------:|
124
+ | 2.1654 | 1.0 | 100 | 1.6435 | 0.1291 | 0.1770 | 0.6919 | nan | 0.6823 | 0.9206 | 0.0 | 0.0022 | 0.0053 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8850 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8425 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9138 | 0.7723 | 0.8186 | 0.0 | 0.0 | 0.0000 | 0.0 | nan | 0.4039 | 0.7194 | 0.0 | 0.0022 | 0.0053 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5851 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5722 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7101 | 0.4854 | 0.7772 | 0.0 | 0.0 | 0.0000 | 0.0 |
125
+ | 1.5984 | 2.0 | 200 | 1.2905 | 0.1517 | 0.1973 | 0.7396 | nan | 0.7415 | 0.9557 | 0.0 | 0.3711 | 0.0160 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9108 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8769 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8585 | 0.8699 | 0.9088 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.4974 | 0.7465 | 0.0 | 0.3665 | 0.0159 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6673 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5889 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7531 | 0.5509 | 0.8181 | 0.0 | 0.0 | 0.0 | 0.0 |
126
+ | 1.2146 | 3.0 | 300 | 1.0847 | 0.1626 | 0.2071 | 0.7634 | nan | 0.7918 | 0.9561 | 0.0 | 0.5225 | 0.0828 | 0.0 | 0.0000 | 0.0 | 0.0 | 0.9191 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8607 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.8959 | 0.8726 | 0.9324 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5364 | 0.7830 | 0.0 | 0.5010 | 0.0768 | 0.0 | 0.0000 | 0.0 | 0.0 | 0.6566 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6147 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7682 | 0.5979 | 0.8319 | 0.0 | 0.0 | 0.0 | 0.0 |
127
+ | 1.0528 | 4.0 | 400 | 0.9593 | 0.1726 | 0.2148 | 0.7818 | nan | 0.8491 | 0.9467 | 0.0 | 0.6248 | 0.1582 | 0.0 | 0.0028 | 0.0 | 0.0 | 0.9208 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.8971 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9124 | 0.8446 | 0.9320 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5559 | 0.8209 | 0.0 | 0.5799 | 0.1382 | 0.0 | 0.0028 | 0.0 | 0.0 | 0.6851 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6297 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7887 | 0.6506 | 0.8429 | 0.0 | 0.0 | 0.0 | 0.0 |
128
+ | 1.151 | 5.0 | 500 | 0.8917 | 0.1781 | 0.2211 | 0.7856 | nan | 0.7689 | 0.9449 | 0.0 | 0.7350 | 0.2627 | 0.0 | 0.0394 | 0.0 | 0.0 | 0.8992 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9103 | 0.0 | 0.0001 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9213 | 0.8734 | 0.9404 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5697 | 0.8051 | 0.0 | 0.6312 | 0.2044 | 0.0 | 0.0386 | 0.0 | 0.0 | 0.7368 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6341 | 0.0 | 0.0001 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7860 | 0.6232 | 0.8482 | 0.0 | 0.0 | 0.0 | 0.0 |
129
+ | 0.8834 | 6.0 | 600 | 0.8488 | 0.1833 | 0.2253 | 0.7930 | nan | 0.8031 | 0.9523 | 0.0 | 0.6739 | 0.3297 | 0.0 | 0.1109 | 0.0 | 0.0 | 0.9189 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9135 | 0.0 | 0.0097 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.9249 | 0.8625 | 0.9365 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.5945 | 0.8182 | 0.0 | 0.6215 | 0.2340 | 0.0 | 0.1044 | 0.0 | 0.0 | 0.7278 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6417 | 0.0 | 0.0096 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.7977 | 0.6393 | 0.8609 | 0.0 | 0.0 | 0.0 | 0.0 |
130
+ | 0.7373 | 7.0 | 700 | 0.7922 | 0.1870 | 0.2305 | 0.7991 | nan | 0.8274 | 0.9366 | 0.0 | 0.7533 | 0.3386 | 0.0 | 0.1780 | 0.0001 | 0.0 | 0.9212 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9144 | 0.0 | 0.0184 | 0.0 | 0.0 | nan | 0.0 | 0.0009 | 0.0 | 0.0 | 0.9324 | 0.8420 | 0.9422 | 0.0 | 0.0 | 0.0000 | 0.0 | nan | 0.5946 | 0.8448 | 0.0 | 0.6344 | 0.2432 | 0.0 | 0.1632 | 0.0001 | 0.0 | 0.7258 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6472 | 0.0 | 0.0181 | 0.0 | 0.0 | nan | 0.0 | 0.0009 | 0.0 | 0.0 | 0.8002 | 0.6380 | 0.8615 | 0.0 | 0.0 | 0.0000 | 0.0 |
131
+ | 0.8252 | 8.0 | 800 | 0.7820 | 0.1888 | 0.2303 | 0.7987 | nan | 0.8024 | 0.9520 | 0.0 | 0.7312 | 0.3178 | 0.0 | 0.1998 | 0.0003 | 0.0 | 0.9060 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9255 | 0.0 | 0.0366 | 0.0 | 0.0 | nan | 0.0 | 0.0005 | 0.0 | 0.0 | 0.9177 | 0.8774 | 0.9322 | 0.0 | 0.0 | 0.0002 | 0.0 | nan | 0.5972 | 0.8253 | 0.0 | 0.6590 | 0.2429 | 0.0 | 0.1763 | 0.0003 | 0.0 | 0.7464 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6439 | 0.0 | 0.0351 | 0.0 | 0.0 | nan | 0.0 | 0.0005 | 0.0 | 0.0 | 0.8022 | 0.6324 | 0.8689 | 0.0 | 0.0 | 0.0002 | 0.0 |
132
+ | 0.6442 | 9.0 | 900 | 0.7593 | 0.1923 | 0.2328 | 0.8030 | nan | 0.8301 | 0.9488 | 0.0 | 0.7388 | 0.3596 | 0.0 | 0.2196 | 0.0013 | 0.0 | 0.9120 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9158 | 0.0 | 0.0559 | 0.0 | 0.0 | nan | 0.0 | 0.0009 | 0.0 | 0.0 | 0.9261 | 0.8226 | 0.9516 | 0.0 | 0.0 | 0.0001 | 0.0 | nan | 0.5992 | 0.8342 | 0.0 | 0.6607 | 0.2569 | 0.0 | 0.1954 | 0.0013 | 0.0 | 0.7445 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6532 | 0.0 | 0.0523 | 0.0 | 0.0 | nan | 0.0 | 0.0009 | 0.0 | 0.0 | 0.8115 | 0.6722 | 0.8643 | 0.0 | 0.0 | 0.0001 | 0.0 |
133
+ | 0.8239 | 10.0 | 1000 | 0.7584 | 0.1932 | 0.2342 | 0.8034 | nan | 0.7939 | 0.9534 | 0.0000 | 0.7630 | 0.3561 | 0.0 | 0.2446 | 0.0018 | 0.0 | 0.9007 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.9194 | 0.0 | 0.0706 | 0.0 | 0.0 | nan | 0.0 | 0.0018 | 0.0 | 0.0 | 0.9304 | 0.8467 | 0.9472 | 0.0 | 0.0 | 0.0004 | 0.0 | nan | 0.6083 | 0.8277 | 0.0000 | 0.6702 | 0.2581 | 0.0 | 0.2113 | 0.0018 | 0.0 | 0.7545 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6531 | 0.0 | 0.0652 | 0.0 | 0.0 | nan | 0.0 | 0.0018 | 0.0 | 0.0 | 0.8060 | 0.6540 | 0.8649 | 0.0 | 0.0 | 0.0003 | 0.0 |
134
+
135
+
136
+ ### Framework versions
137
+
138
+ - Transformers 4.38.2
139
+ - Pytorch 2.2.1+cu121
140
+ - Datasets 2.18.0
141
+ - Tokenizers 0.15.2
config.json ADDED
@@ -0,0 +1,144 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "nvidia/mit-b0",
3
+ "architectures": [
4
+ "SegformerForSemanticSegmentation"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.0,
7
+ "classifier_dropout_prob": 0.1,
8
+ "decoder_hidden_size": 256,
9
+ "depths": [
10
+ 2,
11
+ 2,
12
+ 2,
13
+ 2
14
+ ],
15
+ "downsampling_rates": [
16
+ 1,
17
+ 4,
18
+ 8,
19
+ 16
20
+ ],
21
+ "drop_path_rate": 0.1,
22
+ "hidden_act": "gelu",
23
+ "hidden_dropout_prob": 0.0,
24
+ "hidden_sizes": [
25
+ 32,
26
+ 64,
27
+ 160,
28
+ 256
29
+ ],
30
+ "id2label": {
31
+ "0": "unlabeled",
32
+ "1": "flat-road",
33
+ "2": "flat-sidewalk",
34
+ "3": "flat-crosswalk",
35
+ "4": "flat-cyclinglane",
36
+ "5": "flat-parkingdriveway",
37
+ "6": "flat-railtrack",
38
+ "7": "flat-curb",
39
+ "8": "human-person",
40
+ "9": "human-rider",
41
+ "10": "vehicle-car",
42
+ "11": "vehicle-truck",
43
+ "12": "vehicle-bus",
44
+ "13": "vehicle-tramtrain",
45
+ "14": "vehicle-motorcycle",
46
+ "15": "vehicle-bicycle",
47
+ "16": "vehicle-caravan",
48
+ "17": "vehicle-cartrailer",
49
+ "18": "construction-building",
50
+ "19": "construction-door",
51
+ "20": "construction-wall",
52
+ "21": "construction-fenceguardrail",
53
+ "22": "construction-bridge",
54
+ "23": "construction-tunnel",
55
+ "24": "construction-stairs",
56
+ "25": "object-pole",
57
+ "26": "object-trafficsign",
58
+ "27": "object-trafficlight",
59
+ "28": "nature-vegetation",
60
+ "29": "nature-terrain",
61
+ "30": "sky",
62
+ "31": "void-ground",
63
+ "32": "void-dynamic",
64
+ "33": "void-static",
65
+ "34": "void-unclear"
66
+ },
67
+ "image_size": 224,
68
+ "initializer_range": 0.02,
69
+ "label2id": {
70
+ "construction-bridge": 22,
71
+ "construction-building": 18,
72
+ "construction-door": 19,
73
+ "construction-fenceguardrail": 21,
74
+ "construction-stairs": 24,
75
+ "construction-tunnel": 23,
76
+ "construction-wall": 20,
77
+ "flat-crosswalk": 3,
78
+ "flat-curb": 7,
79
+ "flat-cyclinglane": 4,
80
+ "flat-parkingdriveway": 5,
81
+ "flat-railtrack": 6,
82
+ "flat-road": 1,
83
+ "flat-sidewalk": 2,
84
+ "human-person": 8,
85
+ "human-rider": 9,
86
+ "nature-terrain": 29,
87
+ "nature-vegetation": 28,
88
+ "object-pole": 25,
89
+ "object-trafficlight": 27,
90
+ "object-trafficsign": 26,
91
+ "sky": 30,
92
+ "unlabeled": 0,
93
+ "vehicle-bicycle": 15,
94
+ "vehicle-bus": 12,
95
+ "vehicle-car": 10,
96
+ "vehicle-caravan": 16,
97
+ "vehicle-cartrailer": 17,
98
+ "vehicle-motorcycle": 14,
99
+ "vehicle-tramtrain": 13,
100
+ "vehicle-truck": 11,
101
+ "void-dynamic": 32,
102
+ "void-ground": 31,
103
+ "void-static": 33,
104
+ "void-unclear": 34
105
+ },
106
+ "layer_norm_eps": 1e-06,
107
+ "mlp_ratios": [
108
+ 4,
109
+ 4,
110
+ 4,
111
+ 4
112
+ ],
113
+ "model_type": "segformer",
114
+ "num_attention_heads": [
115
+ 1,
116
+ 2,
117
+ 5,
118
+ 8
119
+ ],
120
+ "num_channels": 3,
121
+ "num_encoder_blocks": 4,
122
+ "patch_sizes": [
123
+ 7,
124
+ 3,
125
+ 3,
126
+ 3
127
+ ],
128
+ "reshape_last_stage": true,
129
+ "semantic_loss_ignore_index": 255,
130
+ "sr_ratios": [
131
+ 8,
132
+ 4,
133
+ 2,
134
+ 1
135
+ ],
136
+ "strides": [
137
+ 4,
138
+ 2,
139
+ 2,
140
+ 2
141
+ ],
142
+ "torch_dtype": "float32",
143
+ "transformers_version": "4.38.2"
144
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e749657d1513b927efc087f4156b73e3f2b145bb64a14c5298d62737fda5091c
3
+ size 14918708
preprocessor_config.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_normalize": true,
3
+ "do_reduce_labels": false,
4
+ "do_rescale": true,
5
+ "do_resize": true,
6
+ "image_mean": [
7
+ 0.485,
8
+ 0.456,
9
+ 0.406
10
+ ],
11
+ "image_processor_type": "SegformerFeatureExtractor",
12
+ "image_std": [
13
+ 0.229,
14
+ 0.224,
15
+ 0.225
16
+ ],
17
+ "resample": 2,
18
+ "rescale_factor": 0.00392156862745098,
19
+ "size": {
20
+ "height": 512,
21
+ "width": 512
22
+ }
23
+ }
runs/Apr12_16-30-02_4ece0295354f/events.out.tfevents.1712939413.4ece0295354f.2236.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c0fb2589465c855436ff6fc966e64c410f295ac73819d55606f1d74232baf969
3
+ size 267656
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bd3a4b2a20521f93b9950071dd295b40e8fc01de6cd87263c8abc7f3999b982a
3
+ size 4920