Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2_1.zip +3 -0
- ppo-LunarLander-v2_1/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2_1/data +99 -0
- ppo-LunarLander-v2_1/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2_1/policy.pth +3 -0
- ppo-LunarLander-v2_1/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2_1/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
|
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
library_name: stable-baselines3
|
| 3 |
+
tags:
|
| 4 |
+
- LunarLander-v2
|
| 5 |
+
- deep-reinforcement-learning
|
| 6 |
+
- reinforcement-learning
|
| 7 |
+
- stable-baselines3
|
| 8 |
+
model-index:
|
| 9 |
+
- name: PPO
|
| 10 |
+
results:
|
| 11 |
+
- task:
|
| 12 |
+
type: reinforcement-learning
|
| 13 |
+
name: reinforcement-learning
|
| 14 |
+
dataset:
|
| 15 |
+
name: LunarLander-v2
|
| 16 |
+
type: LunarLander-v2
|
| 17 |
+
metrics:
|
| 18 |
+
- type: mean_reward
|
| 19 |
+
value: 124.98 +/- 107.02
|
| 20 |
+
name: mean_reward
|
| 21 |
+
verified: false
|
| 22 |
+
---
|
| 23 |
+
|
| 24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
| 25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
| 26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
| 27 |
+
|
| 28 |
+
## Usage (with Stable-baselines3)
|
| 29 |
+
TODO: Add your code
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
```python
|
| 33 |
+
from stable_baselines3 import ...
|
| 34 |
+
from huggingface_sb3 import load_from_hub
|
| 35 |
+
|
| 36 |
+
...
|
| 37 |
+
```
|
config.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ec3ad434a60>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ec3ad434af0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ec3ad434b80>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ec3ad434c10>", "_build": "<function ActorCriticPolicy._build at 0x7ec3ad434ca0>", "forward": "<function ActorCriticPolicy.forward at 0x7ec3ad434d30>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ec3ad434dc0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ec3ad434e50>", "_predict": "<function ActorCriticPolicy._predict at 0x7ec3ad434ee0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ec3ad434f70>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ec3ad435000>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ec3ad435090>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ec3ad5c8540>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1000448, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1724169387714834439, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAFrHEb4udo47e76zO9ySzLniOBa9vhfFOgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00044800000000000395, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGQ0dJJ5E+iMAWyUTegDjAF0lEdAm1z1YhdMTXV9lChoBkdAXnFX5nDiwWgHTegDaAhHQJtj7/echDB1fZQoaAZHQFOePyTY/V1oB03oA2gIR0CbaufbblBAdX2UKGgGR8AonhNM495haAdNtAFoCEdAm29c052hZnV9lChoBkdAYZFGGVRk3GgHTegDaAhHQJt4UQxvegt1fZQoaAZHQGG3+Q2dd3VoB03oA2gIR0Cbf0yi22G7dX2UKGgGR0BlkPI6r/83aAdN5gFoCEdAm4IaNEPUa3V9lChoBkdAXWF+G47Rv2gHTegDaAhHQJuJF5gPVd51fZQoaAZHQFYad43WFvhoB03oA2gIR0CbkBobGWD6dX2UKGgGR0BeTpcophF3aAdN6ANoCEdAm5b4fW+XaHV9lChoBkdAVRAZJkGzKWgHTegDaAhHQJud5ahYeT51fZQoaAZHQF64Phhpg1FoB03oA2gIR0CbpxjY7JXAdX2UKGgGR0BjqadBjWkKaAdN6ANoCEdAm69RPXTVlXV9lChoBkdAW2TC1qnFYWgHTegDaAhHQJu2OYD1XeZ1fZQoaAZHQGiUOPvKEFpoB03dAWgIR0CbuPYTCcgAdX2UKGgGR0BZZLTx5LRKaAdN6ANoCEdAm7/3nZCfH3V9lChoBkdAYIJ/DtPYWmgHTegDaAhHQJvG7PGACnx1fZQoaAZHQF+6f+jua4NoB03oA2gIR0Cbzd+C9RJmdX2UKGgGR0BiQp64UeuFaAdN6ANoCEdAm9WE8JUo8nV9lChoBkdAYnWzNUwSJ2gHTR4CaAhHQJvbSiL2pQ11fZQoaAZHQF56sSkCV8loB03oA2gIR0Cb4yqgyuZDdX2UKGgGR0BhNpa9sabXaAdN6ANoCEdAm+odcB2fTXV9lChoBkdAX5x5Pdl/Y2gHTegDaAhHQJvw/yVfNRp1fZQoaAZHQFsCn2ZiNKhoB03oA2gIR0Cb9/PmPo3adX2UKGgGR0BZ5tMbm2b5aAdN6ANoCEdAm/7osmOU+3V9lChoBkdAWC05WBBiTmgHTegDaAhHQJwF6IRAbAF1fZQoaAZHQF6Vqo60Y0loB03oA2gIR0CcD3Z5iVjadX2UKGgGR0BmQq2fChvjaAdNCQJoCEdAnBRQNG3F1nV9lChoBkdAYw5MwlByCGgHTegDaAhHQJwdpkQPI4l1fZQoaAZHQFybij+JgstoB03oA2gIR0CcJKAeq7yydX2UKGgGR0BbeFmz0HyFaAdN6ANoCEdAnCuKCYkVvnV9lChoBkdAYEQqCpWFOGgHTegDaAhHQJwyeFqSHM51fZQoaAZHQF7P/nW8RL9oB03oA2gIR0CcOXGUfPondX2UKGgGR0BboqkAPuohaAdN6ANoCEdAnEICsGPgenV9lChoBkdAVSgscyWRimgHTegDaAhHQJxKyCwr1/V1fZQoaAZHQGHdkbPyCnRoB03oA2gIR0CcUbWLxZuAdX2UKGgGR0BiwoClrM1TaAdN6ANoCEdAnFi6xX4j8nV9lChoBkdAVhfZkCmuT2gHTegDaAhHQJxfxE3Kji51fZQoaAZHQF7NwpvxYq5oB03oA2gIR0CcZuDzyz5XdX2UKGgGR0BXRA2606YFaAdN6ANoCEdAnG4K2a2F4HV9lChoBkdAUwEDQqqfe2gHTegDaAhHQJx2vvphWo51fZQoaAZHQFyU4kNWluZoB03oA2gIR0Ccf2TrVvuPdX2UKGgGR0BlVXYnOSntaAdN6ANoCEdAnIZivX9R8HV9lChoBkdAW2yCK77KrGgHTegDaAhHQJyNUe/5+H91fZQoaAZHQFyIfyf+S8toB03oA2gIR0CclJCfpUxVdX2UKGgGR0BRHzP4VRDUaAdN6ANoCEdAnJuKyv9tM3V9lChoBkdAXxP2h7E5yWgHTegDaAhHQJyigDSw4bV1fZQoaAZHQFaoqgAZKnNoB03oA2gIR0CcqxPbfxc3dX2UKGgGR0BgEA4jrzGxaAdN6ANoCEdAnLNRdld1MnV9lChoBkdAZZ0Lzf779GgHTegDaAhHQJy6PFUADJV1fZQoaAZHQGuTYnWrfchoB03BAWgIR0CcvMJFspG4dX2UKGgGR0BgsPVPN3W4aAdN6ANoCEdAnMO6nivPknV9lChoBkdAWsgm2LHdXWgHTegDaAhHQJzKmeAd4ml1fZQoaAZHQGEMSXt0FKVoB03oA2gIR0Cc0YhzvJA/dX2UKGgGR0BZQfVZs9B9aAdN6ANoCEdAnNj7TH80lHV9lChoBkdAWfj2WY4Qz2gHTegDaAhHQJziKBwuM/B1fZQoaAZHQFiIMRpUPxxoB03oA2gIR0Cc6aE/B3zMdX2UKGgGR0Bd82KVII4VaAdN6ANoCEdAnPCgMx46fnV9lChoBkdAX8jh/Aj6e2gHTegDaAhHQJz3iI+GGmF1fZQoaAZHQFXS69TP0I1oB03oA2gIR0Cc/mynUDuCdX2UKGgGR0BV4Gsq8UVSaAdN6ANoCEdAnQVuCkGiYnV9lChoBkdAVj5inYQJ5WgHTegDaAhHQJ0MxlNDc/N1fZQoaAZHQFWGqfvnbItoB03oA2gIR0CdFjtx+8XfdX2UKGgGR0BbjuD3/PxAaAdN6ANoCEdAnR3PHktEonV9lChoBkdAVVa5f+jubGgHTegDaAhHQJ0k6a+evp11fZQoaAZHQGFY9nK4hEBoB03oA2gIR0CdK+icG1QZdX2UKGgGR0BQZ1f3N9piaAdN6ANoCEdAnTLK+36RAHV9lChoBkdAWZWMHbAUL2gHTegDaAhHQJ05wYGdI5J1fZQoaAZHQFSgjL0SRKZoB03oA2gIR0CdQRK508vFdX2UKGgGR0BofkFhXr+paAdN4gFoCEdAnUSF0o0ALnV9lChoBkfAQNnD7655JWgHTd0BaAhHQJ1KCj7ALzB1fZQoaAZHQF2FJ3xFy7xoB03oA2gIR0CdUcK4x1xLdX2UKGgGR0BU+uWOZLIxaAdN6ANoCEdAnVjNbxEv03V9lChoBkdAV4iQjlgc+GgHTegDaAhHQJ1f17dBSk11fZQoaAZHQF/RBuXNTtNoB03oA2gIR0CdZuFyq+8HdX2UKGgGR0Bcts3EQ5FPaAdN6ANoCEdAnW3elsP8RHV9lChoBkdAVraWom5UcWgHTegDaAhHQJ1zrAymALB1fZQoaAZHQFXtcbR4QjFoB03oA2gIR0CdfKhpQDV6dX2UKGgGR8A3kIK+i8FqaAdNpQFoCEdAnYE7SmZVn3V9lChoBkdAWBbcQAdXDGgHTegDaAhHQJ2IHyEtdzJ1fZQoaAZHQFXMgIhQm/poB03oA2gIR0CdjvEhq0tzdX2UKGgGR0BSTBO1v2oOaAdN6ANoCEdAnZX8GX5WR3V9lChoBkdAVvXhESdvsWgHTegDaAhHQJ2dBzxPO6d1fZQoaAZHwDv+2fChvitoB02DAWgIR0CdnzNZ/0/XdX2UKGgGR0BYIvjKgZjyaAdN6ANoCEdAnaZCnLq2SnV9lChoBkdAWgZbILgGbGgHTegDaAhHQJ2u4vQF9rp1fZQoaAZHQGIFdalk6LhoB03oA2gIR0CdtwUcXFcZdX2UKGgGR0BcjJ0W/JvHaAdN6ANoCEdAnb3OYD1XeXV9lChoBkdAXyZeRgZ0jmgHTegDaAhHQJ3EyTkhib51fZQoaAZHwFNzcIqslsxoB00FAmgIR0CdyOuPmxMWdX2UKGgGR0Bat2pAD7qIaAdN6ANoCEdAnc/ZXU6PsHV9lChoBkdAYJDlT3qRl2gHTegDaAhHQJ3W2ErXlKd1fZQoaAZHQFyd5ggHNX5oB03oA2gIR0Cd3Sq7AckudX2UKGgGR0Bi8L0jC53DaAdN6ANoCEdAneaDPa+N+HV9lChoBkdAXZbEgntv42gHTegDaAhHQJ3txxxT8511fZQoaAZHwEe63G4qgAZoB01bAmgIR0Cd8lLW7OE/dX2UKGgGR0BbLfUKArhBaAdN6ANoCEdAnfl3b/Ot4nV9lChoBkdARHRcmjTKDGgHTegDaAhHQJ4AlC1JDmd1fZQoaAZHQFe0IsRQJoloB03oA2gIR0CeB4XjENvwdX2UKGgGR0Bbeyt7rs0IaAdN6ANoCEdAng5tNnGsFXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3908, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVOgMAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJRoMowUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoPYoRDgG2qg9mqh6cNAjunOfirQCMA2luY5SKEE1wmSlbxUqEGsooygb0rE51jApoYXNfdWludDMylEsAjAh1aW50ZWdlcpRLAHVidWIu", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": "Generator(PCG64)"}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWVpAEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJRoG4wUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoJooRPGuXTwWsvmhX0YBwreiHvwCMA2luY5SKEIEZbeLKLtMsJHkOKvLdoXR1jApoYXNfdWludDMylEsBjAh1aW50ZWdlcpSKBS9+UIkAdWJ1Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": "Generator(PCG64)"}, "n_envs": 1, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2_1.zip
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:410443fd31cf6fd756509f4a40c4faf58ec2a1ae1ab6a2a3bf8cd72c6ef6889e
|
| 3 |
+
size 147986
|
ppo-LunarLander-v2_1/_stable_baselines3_version
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
2.0.0a5
|
ppo-LunarLander-v2_1/data
ADDED
|
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"policy_class": {
|
| 3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
| 4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
| 5 |
+
"__module__": "stable_baselines3.common.policies",
|
| 6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
| 7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7ec3ad434a60>",
|
| 8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ec3ad434af0>",
|
| 9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ec3ad434b80>",
|
| 10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ec3ad434c10>",
|
| 11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7ec3ad434ca0>",
|
| 12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7ec3ad434d30>",
|
| 13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7ec3ad434dc0>",
|
| 14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ec3ad434e50>",
|
| 15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7ec3ad434ee0>",
|
| 16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ec3ad434f70>",
|
| 17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ec3ad435000>",
|
| 18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7ec3ad435090>",
|
| 19 |
+
"__abstractmethods__": "frozenset()",
|
| 20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7ec3ad5c8540>"
|
| 21 |
+
},
|
| 22 |
+
"verbose": 1,
|
| 23 |
+
"policy_kwargs": {},
|
| 24 |
+
"num_timesteps": 1000448,
|
| 25 |
+
"_total_timesteps": 1000000,
|
| 26 |
+
"_num_timesteps_at_start": 0,
|
| 27 |
+
"seed": null,
|
| 28 |
+
"action_noise": null,
|
| 29 |
+
"start_time": 1724169387714834439,
|
| 30 |
+
"learning_rate": 0.0003,
|
| 31 |
+
"tensorboard_log": null,
|
| 32 |
+
"_last_obs": {
|
| 33 |
+
":type:": "<class 'numpy.ndarray'>",
|
| 34 |
+
":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAFrHEb4udo47e76zO9ySzLniOBa9vhfFOgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
|
| 35 |
+
},
|
| 36 |
+
"_last_episode_starts": {
|
| 37 |
+
":type:": "<class 'numpy.ndarray'>",
|
| 38 |
+
":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
|
| 39 |
+
},
|
| 40 |
+
"_last_original_obs": null,
|
| 41 |
+
"_episode_num": 0,
|
| 42 |
+
"use_sde": false,
|
| 43 |
+
"sde_sample_freq": -1,
|
| 44 |
+
"_current_progress_remaining": -0.00044800000000000395,
|
| 45 |
+
"_stats_window_size": 100,
|
| 46 |
+
"ep_info_buffer": {
|
| 47 |
+
":type:": "<class 'collections.deque'>",
|
| 48 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGQ0dJJ5E+iMAWyUTegDjAF0lEdAm1z1YhdMTXV9lChoBkdAXnFX5nDiwWgHTegDaAhHQJtj7/echDB1fZQoaAZHQFOePyTY/V1oB03oA2gIR0CbaufbblBAdX2UKGgGR8AonhNM495haAdNtAFoCEdAm29c052hZnV9lChoBkdAYZFGGVRk3GgHTegDaAhHQJt4UQxvegt1fZQoaAZHQGG3+Q2dd3VoB03oA2gIR0Cbf0yi22G7dX2UKGgGR0BlkPI6r/83aAdN5gFoCEdAm4IaNEPUa3V9lChoBkdAXWF+G47Rv2gHTegDaAhHQJuJF5gPVd51fZQoaAZHQFYad43WFvhoB03oA2gIR0CbkBobGWD6dX2UKGgGR0BeTpcophF3aAdN6ANoCEdAm5b4fW+XaHV9lChoBkdAVRAZJkGzKWgHTegDaAhHQJud5ahYeT51fZQoaAZHQF64Phhpg1FoB03oA2gIR0CbpxjY7JXAdX2UKGgGR0BjqadBjWkKaAdN6ANoCEdAm69RPXTVlXV9lChoBkdAW2TC1qnFYWgHTegDaAhHQJu2OYD1XeZ1fZQoaAZHQGiUOPvKEFpoB03dAWgIR0CbuPYTCcgAdX2UKGgGR0BZZLTx5LRKaAdN6ANoCEdAm7/3nZCfH3V9lChoBkdAYIJ/DtPYWmgHTegDaAhHQJvG7PGACnx1fZQoaAZHQF+6f+jua4NoB03oA2gIR0Cbzd+C9RJmdX2UKGgGR0BiQp64UeuFaAdN6ANoCEdAm9WE8JUo8nV9lChoBkdAYnWzNUwSJ2gHTR4CaAhHQJvbSiL2pQ11fZQoaAZHQF56sSkCV8loB03oA2gIR0Cb4yqgyuZDdX2UKGgGR0BhNpa9sabXaAdN6ANoCEdAm+odcB2fTXV9lChoBkdAX5x5Pdl/Y2gHTegDaAhHQJvw/yVfNRp1fZQoaAZHQFsCn2ZiNKhoB03oA2gIR0Cb9/PmPo3adX2UKGgGR0BZ5tMbm2b5aAdN6ANoCEdAm/7osmOU+3V9lChoBkdAWC05WBBiTmgHTegDaAhHQJwF6IRAbAF1fZQoaAZHQF6Vqo60Y0loB03oA2gIR0CcD3Z5iVjadX2UKGgGR0BmQq2fChvjaAdNCQJoCEdAnBRQNG3F1nV9lChoBkdAYw5MwlByCGgHTegDaAhHQJwdpkQPI4l1fZQoaAZHQFybij+JgstoB03oA2gIR0CcJKAeq7yydX2UKGgGR0BbeFmz0HyFaAdN6ANoCEdAnCuKCYkVvnV9lChoBkdAYEQqCpWFOGgHTegDaAhHQJwyeFqSHM51fZQoaAZHQF7P/nW8RL9oB03oA2gIR0CcOXGUfPondX2UKGgGR0BboqkAPuohaAdN6ANoCEdAnEICsGPgenV9lChoBkdAVSgscyWRimgHTegDaAhHQJxKyCwr1/V1fZQoaAZHQGHdkbPyCnRoB03oA2gIR0CcUbWLxZuAdX2UKGgGR0BiwoClrM1TaAdN6ANoCEdAnFi6xX4j8nV9lChoBkdAVhfZkCmuT2gHTegDaAhHQJxfxE3Kji51fZQoaAZHQF7NwpvxYq5oB03oA2gIR0CcZuDzyz5XdX2UKGgGR0BXRA2606YFaAdN6ANoCEdAnG4K2a2F4HV9lChoBkdAUwEDQqqfe2gHTegDaAhHQJx2vvphWo51fZQoaAZHQFyU4kNWluZoB03oA2gIR0Ccf2TrVvuPdX2UKGgGR0BlVXYnOSntaAdN6ANoCEdAnIZivX9R8HV9lChoBkdAW2yCK77KrGgHTegDaAhHQJyNUe/5+H91fZQoaAZHQFyIfyf+S8toB03oA2gIR0CclJCfpUxVdX2UKGgGR0BRHzP4VRDUaAdN6ANoCEdAnJuKyv9tM3V9lChoBkdAXxP2h7E5yWgHTegDaAhHQJyigDSw4bV1fZQoaAZHQFaoqgAZKnNoB03oA2gIR0CcqxPbfxc3dX2UKGgGR0BgEA4jrzGxaAdN6ANoCEdAnLNRdld1MnV9lChoBkdAZZ0Lzf779GgHTegDaAhHQJy6PFUADJV1fZQoaAZHQGuTYnWrfchoB03BAWgIR0CcvMJFspG4dX2UKGgGR0BgsPVPN3W4aAdN6ANoCEdAnMO6nivPknV9lChoBkdAWsgm2LHdXWgHTegDaAhHQJzKmeAd4ml1fZQoaAZHQGEMSXt0FKVoB03oA2gIR0Cc0YhzvJA/dX2UKGgGR0BZQfVZs9B9aAdN6ANoCEdAnNj7TH80lHV9lChoBkdAWfj2WY4Qz2gHTegDaAhHQJziKBwuM/B1fZQoaAZHQFiIMRpUPxxoB03oA2gIR0Cc6aE/B3zMdX2UKGgGR0Bd82KVII4VaAdN6ANoCEdAnPCgMx46fnV9lChoBkdAX8jh/Aj6e2gHTegDaAhHQJz3iI+GGmF1fZQoaAZHQFXS69TP0I1oB03oA2gIR0Cc/mynUDuCdX2UKGgGR0BV4Gsq8UVSaAdN6ANoCEdAnQVuCkGiYnV9lChoBkdAVj5inYQJ5WgHTegDaAhHQJ0MxlNDc/N1fZQoaAZHQFWGqfvnbItoB03oA2gIR0CdFjtx+8XfdX2UKGgGR0BbjuD3/PxAaAdN6ANoCEdAnR3PHktEonV9lChoBkdAVVa5f+jubGgHTegDaAhHQJ0k6a+evp11fZQoaAZHQGFY9nK4hEBoB03oA2gIR0CdK+icG1QZdX2UKGgGR0BQZ1f3N9piaAdN6ANoCEdAnTLK+36RAHV9lChoBkdAWZWMHbAUL2gHTegDaAhHQJ05wYGdI5J1fZQoaAZHQFSgjL0SRKZoB03oA2gIR0CdQRK508vFdX2UKGgGR0BofkFhXr+paAdN4gFoCEdAnUSF0o0ALnV9lChoBkfAQNnD7655JWgHTd0BaAhHQJ1KCj7ALzB1fZQoaAZHQF2FJ3xFy7xoB03oA2gIR0CdUcK4x1xLdX2UKGgGR0BU+uWOZLIxaAdN6ANoCEdAnVjNbxEv03V9lChoBkdAV4iQjlgc+GgHTegDaAhHQJ1f17dBSk11fZQoaAZHQF/RBuXNTtNoB03oA2gIR0CdZuFyq+8HdX2UKGgGR0Bcts3EQ5FPaAdN6ANoCEdAnW3elsP8RHV9lChoBkdAVraWom5UcWgHTegDaAhHQJ1zrAymALB1fZQoaAZHQFXtcbR4QjFoB03oA2gIR0CdfKhpQDV6dX2UKGgGR8A3kIK+i8FqaAdNpQFoCEdAnYE7SmZVn3V9lChoBkdAWBbcQAdXDGgHTegDaAhHQJ2IHyEtdzJ1fZQoaAZHQFXMgIhQm/poB03oA2gIR0CdjvEhq0tzdX2UKGgGR0BSTBO1v2oOaAdN6ANoCEdAnZX8GX5WR3V9lChoBkdAVvXhESdvsWgHTegDaAhHQJ2dBzxPO6d1fZQoaAZHwDv+2fChvitoB02DAWgIR0CdnzNZ/0/XdX2UKGgGR0BYIvjKgZjyaAdN6ANoCEdAnaZCnLq2SnV9lChoBkdAWgZbILgGbGgHTegDaAhHQJ2u4vQF9rp1fZQoaAZHQGIFdalk6LhoB03oA2gIR0CdtwUcXFcZdX2UKGgGR0BcjJ0W/JvHaAdN6ANoCEdAnb3OYD1XeXV9lChoBkdAXyZeRgZ0jmgHTegDaAhHQJ3EyTkhib51fZQoaAZHwFNzcIqslsxoB00FAmgIR0CdyOuPmxMWdX2UKGgGR0Bat2pAD7qIaAdN6ANoCEdAnc/ZXU6PsHV9lChoBkdAYJDlT3qRl2gHTegDaAhHQJ3W2ErXlKd1fZQoaAZHQFyd5ggHNX5oB03oA2gIR0Cd3Sq7AckudX2UKGgGR0Bi8L0jC53DaAdN6ANoCEdAneaDPa+N+HV9lChoBkdAXZbEgntv42gHTegDaAhHQJ3txxxT8511fZQoaAZHwEe63G4qgAZoB01bAmgIR0Cd8lLW7OE/dX2UKGgGR0BbLfUKArhBaAdN6ANoCEdAnfl3b/Ot4nV9lChoBkdARHRcmjTKDGgHTegDaAhHQJ4AlC1JDmd1fZQoaAZHQFe0IsRQJoloB03oA2gIR0CeB4XjENvwdX2UKGgGR0Bbeyt7rs0IaAdN6ANoCEdAng5tNnGsFXVlLg=="
|
| 49 |
+
},
|
| 50 |
+
"ep_success_buffer": {
|
| 51 |
+
":type:": "<class 'collections.deque'>",
|
| 52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
| 53 |
+
},
|
| 54 |
+
"_n_updates": 3908,
|
| 55 |
+
"observation_space": {
|
| 56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
| 57 |
+
":serialized:": "gAWVOgMAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJRoMowUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoPYoRDgG2qg9mqh6cNAjunOfirQCMA2luY5SKEE1wmSlbxUqEGsooygb0rE51jApoYXNfdWludDMylEsAjAh1aW50ZWdlcpRLAHVidWIu",
|
| 58 |
+
"dtype": "float32",
|
| 59 |
+
"bounded_below": "[ True True True True True True True True]",
|
| 60 |
+
"bounded_above": "[ True True True True True True True True]",
|
| 61 |
+
"_shape": [
|
| 62 |
+
8
|
| 63 |
+
],
|
| 64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
| 65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
| 66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
| 67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
| 68 |
+
"_np_random": "Generator(PCG64)"
|
| 69 |
+
},
|
| 70 |
+
"action_space": {
|
| 71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
| 72 |
+
":serialized:": "gAWVpAEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJRoG4wUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoJooRPGuXTwWsvmhX0YBwreiHvwCMA2luY5SKEIEZbeLKLtMsJHkOKvLdoXR1jApoYXNfdWludDMylEsBjAh1aW50ZWdlcpSKBS9+UIkAdWJ1Yi4=",
|
| 73 |
+
"n": "4",
|
| 74 |
+
"start": "0",
|
| 75 |
+
"_shape": [],
|
| 76 |
+
"dtype": "int64",
|
| 77 |
+
"_np_random": "Generator(PCG64)"
|
| 78 |
+
},
|
| 79 |
+
"n_envs": 1,
|
| 80 |
+
"n_steps": 1024,
|
| 81 |
+
"gamma": 0.999,
|
| 82 |
+
"gae_lambda": 0.98,
|
| 83 |
+
"ent_coef": 0.01,
|
| 84 |
+
"vf_coef": 0.5,
|
| 85 |
+
"max_grad_norm": 0.5,
|
| 86 |
+
"batch_size": 64,
|
| 87 |
+
"n_epochs": 4,
|
| 88 |
+
"clip_range": {
|
| 89 |
+
":type:": "<class 'function'>",
|
| 90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
| 91 |
+
},
|
| 92 |
+
"clip_range_vf": null,
|
| 93 |
+
"normalize_advantage": true,
|
| 94 |
+
"target_kl": null,
|
| 95 |
+
"lr_schedule": {
|
| 96 |
+
":type:": "<class 'function'>",
|
| 97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
| 98 |
+
}
|
| 99 |
+
}
|
ppo-LunarLander-v2_1/policy.optimizer.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:6b1d4de111606bb24fb85337833dffc9ce66672a9a81c8ec9f6acda39a37316a
|
| 3 |
+
size 88362
|
ppo-LunarLander-v2_1/policy.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:0298a0374b6961337f0be6d2014e0c09c7b36e414c4339bc3cb12551659af83c
|
| 3 |
+
size 43762
|
ppo-LunarLander-v2_1/pytorch_variables.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
| 3 |
+
size 864
|
ppo-LunarLander-v2_1/system_info.txt
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
- OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024
|
| 2 |
+
- Python: 3.10.12
|
| 3 |
+
- Stable-Baselines3: 2.0.0a5
|
| 4 |
+
- PyTorch: 2.3.1+cu121
|
| 5 |
+
- GPU Enabled: True
|
| 6 |
+
- Numpy: 1.26.4
|
| 7 |
+
- Cloudpickle: 2.2.1
|
| 8 |
+
- Gymnasium: 0.28.1
|
| 9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
|
Binary file (187 kB). View file
|
|
|
results.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"mean_reward": 124.97990659999998, "std_reward": 107.02214379385853, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-08-20T16:47:02.676800"}
|