|
|
|
|
|
from functools import lru_cache |
|
from typing import Any, Dict, List, Optional, Tuple |
|
|
|
import torch |
|
from transformers import PreTrainedTokenizer |
|
|
|
DEFAULT_SYSTEM_PROMPT = """You are a helpful, respectful and honest assistant. Always answer as helpfully as possible.""" |
|
|
|
|
|
|
|
|
|
@lru_cache() |
|
def bytes_to_unicode(): |
|
"""Returns list of utf-8 byte and a mapping to unicode strings. |
|
|
|
We specifically avoids mapping to whitespace/control characters the bpe code |
|
barfs on. |
|
|
|
The reversible bpe codes work on unicode strings. This means you need a |
|
large # of unicode characters in your vocab if you want to avoid UNKs. When |
|
you're at something like a 10B token dataset you end up needing around 5K |
|
for decent coverage. This is a significant percentage of your normal, say, |
|
32K bpe vocab. To avoid that, we want lookup tables between utf-8 bytes and |
|
unicode strings. |
|
""" |
|
bs = (list(range(ord('!'), |
|
ord('~') + 1)) + list(range(ord('¡'), |
|
ord('¬') + 1)) + |
|
list(range(ord('®'), |
|
ord('ÿ') + 1))) |
|
cs = bs[:] |
|
n = 0 |
|
for b in range(2**8): |
|
if b not in bs: |
|
bs.append(b) |
|
cs.append(2**8 + n) |
|
n += 1 |
|
cs = [chr(n) for n in cs] |
|
return dict(zip(bs, cs)) |
|
|
|
|
|
class TiktokenTokenizerWrapper(PreTrainedTokenizer): |
|
"""A thin wrapper around tiktoken to make it compatible with Hugging Face. |
|
|
|
tokenizers. |
|
|
|
See HuggingFace for further documentation on general tokenizer methods. |
|
""" |
|
|
|
model_input_names = ['input_ids', 'attention_mask'] |
|
|
|
def __init__(self, |
|
model_name: Optional[str] = None, |
|
encoding_name: Optional[str] = None, |
|
add_bos_token: bool = False, |
|
add_eos_token: bool = False, |
|
use_default_system_prompt: bool = False, |
|
unk_token: Optional[str] = '<|endoftext|>', |
|
eos_token: Optional[str] = '<|endoftext|>', |
|
bos_token: Optional[str] = '<|endoftext|>', |
|
pad_token: Optional[str] = None, |
|
**kwargs: Any): |
|
"""Constructor creates a tiktoken tokenizer to use as the underlying. |
|
|
|
tokenizer. |
|
|
|
Args: |
|
model_name (Optional[str], optional): The name of the model to load from tiktoken. Defaults to None. |
|
Either model_name or encoding_name must be set, but not both. |
|
encoding_name (Optional[str], optional): The name of the encoding to load from tiktoken. Defaults to None. |
|
Either model_name or encoding_name must be set, but not both. |
|
add_bos_token (bool, optional): Whether to add bos tokens. Defaults to False. |
|
add_eos_token (bool, optional): Whether to add eos tokens. Defaults to False. |
|
use_default_system_prompt (bool, optional): Use the default system prompt or not. Defaults to False. |
|
unk_token (Optional[str], optional): The unk token. Defaults to '<|endoftext|>'. |
|
eos_token (Optional[str], optional): The eos token. Defaults to '<|endoftext|>'. |
|
bos_token (Optional[str], optional): The bos token. Defaults to '<|endoftext|>'. |
|
pad_token (Optional[str], optional): The pad token. Defaults to None. |
|
""" |
|
try: |
|
import tiktoken |
|
except: |
|
raise ImportError( |
|
'You need to install tiktoken to use TiktokenTokenizerWrapper.') |
|
|
|
|
|
|
|
|
|
import copyreg |
|
import functools |
|
|
|
from tiktoken import Encoding |
|
|
|
def pickle_Encoding(enc: Encoding): |
|
return (functools.partial(Encoding, |
|
enc.name, |
|
pat_str=enc._pat_str, |
|
mergeable_ranks=enc._mergeable_ranks, |
|
special_tokens=enc._special_tokens), ()) |
|
|
|
copyreg.pickle(Encoding, pickle_Encoding) |
|
|
|
if model_name is not None and encoding_name is not None: |
|
raise ValueError( |
|
'You need to specify either model_name or encoding_name, not both.' |
|
) |
|
|
|
self.model_name = model_name |
|
self.encoding_name = encoding_name |
|
|
|
if self.model_name is not None: |
|
self.encoding = tiktoken.encoding_for_model( |
|
self.model_name) |
|
elif self.encoding_name is not None: |
|
self.encoding = tiktoken.get_encoding( |
|
self.encoding_name) |
|
else: |
|
raise ValueError( |
|
'You need to specify either model_name or encoding_name.') |
|
|
|
self.add_bos_token = add_bos_token |
|
self.add_eos_token = add_eos_token |
|
self.use_default_system_prompt = use_default_system_prompt |
|
|
|
self.byte_encoder = bytes_to_unicode() |
|
self.byte_decoder = {v: k for k, v in self.byte_encoder.items()} |
|
|
|
self.decoder = {} |
|
for i in range(self.encoding.n_vocab): |
|
try: |
|
self.encoding.decode_single_token_bytes(i) |
|
except KeyError: |
|
continue |
|
|
|
|
|
decoding = ''.join([ |
|
bytes_to_unicode()[ord(char)] for char in |
|
self.encoding.decode_single_token_bytes(i).decode('latin-1') |
|
]) |
|
self.decoder[i] = decoding |
|
|
|
self.encoder = {} |
|
for i in range(self.encoding.n_vocab): |
|
if i in self.decoder: |
|
self.encoder[self.decoder[i]] = i |
|
|
|
super().__init__(model_name=model_name, |
|
encoding_name=encoding_name, |
|
add_bos_token=add_bos_token, |
|
add_eos_token=add_eos_token, |
|
use_default_system_prompt=use_default_system_prompt, |
|
unk_token=unk_token, |
|
eos_token=eos_token, |
|
bos_token=bos_token, |
|
pad_token=pad_token, |
|
**kwargs) |
|
|
|
@property |
|
def vocab_size(self) -> int: |
|
"""Returns vocab size.""" |
|
return self.encoding.n_vocab |
|
|
|
@property |
|
def is_fast(self) -> bool: |
|
return False |
|
|
|
@property |
|
def default_chat_template(self): |
|
"""Chat ML Template for User/Assistant. |
|
|
|
Pinning default Chat ML template in case defaults change. |
|
""" |
|
template = ( |
|
"{% set system_message = '' %}" |
|
'{% if USE_DEFAULT_PROMPT == true %}' |
|
"{{'<|im_start|>system\n' + 'DEFAULT_SYSTEM_PROMPT'}}" |
|
'{% endif %}' |
|
'{% for message in messages %}' |
|
"{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}" |
|
'{% endfor %}') |
|
template = template.replace( |
|
'USE_DEFAULT_PROMPT', |
|
'true' if self.use_default_system_prompt else 'false') |
|
template = template.replace('DEFAULT_SYSTEM_PROMPT', |
|
DEFAULT_SYSTEM_PROMPT) |
|
return template |
|
|
|
def get_vocab(self) -> Dict[str, int]: |
|
"""Returns vocab as a dict. |
|
|
|
Note: This function does not work properly due to difference in assumptions between tiktoken and Hugging Face tokenizers. |
|
Most uses do not need to use get_vocab, so this is not a priority to fix. |
|
""" |
|
|
|
|
|
|
|
vocab_clone = self.encoder.copy() |
|
extra_id_index = 0 |
|
candidate_extra_id = f'<extra_id_{extra_id_index}>' |
|
indices_to_fill_in = {i for i in range(self.vocab_size)} - set( |
|
vocab_clone.values()) |
|
|
|
|
|
for index_to_add in indices_to_fill_in: |
|
|
|
while candidate_extra_id in vocab_clone: |
|
extra_id_index += 1 |
|
candidate_extra_id = f'<extra_id_{extra_id_index}>' |
|
|
|
|
|
vocab_clone[candidate_extra_id] = index_to_add |
|
|
|
return vocab_clone |
|
|
|
def _tokenize(self, text: str) -> List[str]: |
|
"""Returns a tokenized string.""" |
|
if not isinstance(text, str): |
|
raise ValueError( |
|
f'Expected a string input to _tokenize but got {type(text)}.') |
|
|
|
tokens = [ |
|
self.decoder[t] |
|
for t in self.encoding.encode(text, allowed_special='all') |
|
] |
|
|
|
return tokens |
|
|
|
def _convert_token_to_id(self, token: str): |
|
"""Converts a token (str) in an id using the vocab.""" |
|
return self.encoder.get(token, self.encoder.get(self.unk_token)) |
|
|
|
def _convert_id_to_token(self, index: int): |
|
"""Converts an index (integer) in a token (str) using the vocab.""" |
|
return self.decoder.get(index) |
|
|
|
def convert_tokens_to_string(self, tokens: List[str]): |
|
"""Converts a sequence of tokens (string) in a single string.""" |
|
text = ''.join(tokens) |
|
text = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8') |
|
return text |
|
|
|
def build_inputs_with_special_tokens( |
|
self, |
|
token_ids_0: List[int], |
|
token_ids_1: Optional[List[int]] = None) -> List[int]: |
|
bos_token_id = [self.bos_token_id] if self.add_bos_token else [] |
|
eos_token_id = [self.eos_token_id] if self.add_eos_token else [] |
|
|
|
output = bos_token_id + token_ids_0 + eos_token_id |
|
|
|
if token_ids_1 is not None: |
|
output = output + bos_token_id + token_ids_1 + eos_token_id |
|
|
|
return output |
|
|
|
def get_special_tokens_mask( |
|
self, |
|
token_ids_0: List[int], |
|
token_ids_1: Optional[List[int]] = None, |
|
already_has_special_tokens: bool = False) -> List[int]: |
|
"""Retrieves sequence ids from a token list that has no special tokens. |
|
|
|
Function copied from |
|
https://github.com/huggingface/transformers/blob/e3a4bd2bee212a2d0fd9f03b27fe7bfc1debe42d/src/transformers/models/gpt2/tokenization_gpt2.py#L265-L295 |
|
|
|
added. This method is called when adding special tokens using the |
|
tokenizer `prepare_for_model` or `encode_plus` methods. |
|
|
|
Args: |
|
token_ids_0 (`List[int]`): |
|
List of IDs. |
|
token_ids_1 (`List[int]`, *optional*): |
|
Optional second list of IDs for sequence pairs. |
|
already_has_special_tokens (`bool`, *optional*, defaults to `False`): |
|
Whether or not the token list is already formatted with special tokens for the model. |
|
|
|
Returns: |
|
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. |
|
""" |
|
if already_has_special_tokens: |
|
return super().get_special_tokens_mask( |
|
token_ids_0=token_ids_0, |
|
token_ids_1=token_ids_1, |
|
already_has_special_tokens=True) |
|
|
|
bos_token_id = [1] if self.add_bos_token else [] |
|
eos_token_id = [1] if self.add_eos_token else [] |
|
|
|
if token_ids_1 is None: |
|
return bos_token_id + ([0] * len(token_ids_0)) + eos_token_id |
|
return (bos_token_id + ([0] * len(token_ids_0)) + eos_token_id + |
|
bos_token_id + ([0] * len(token_ids_1)) + eos_token_id) |
|
|
|
def create_token_type_ids_from_sequences( |
|
self, |
|
token_ids_0: List[int], |
|
token_ids_1: Optional[List[int]] = None) -> List[int]: |
|
sep = [self.sep_token_id] |
|
|
|
if token_ids_1 is None: |
|
return len(token_ids_0 + sep) * [0] |
|
return len(token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1] |
|
|
|
def save_vocabulary(self, |
|
save_directory: str, |
|
filename_prefix: Optional[str] = None) -> Tuple[str]: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return (None, None) |
|
|
|
def sanitize_special_tokens(self) -> int: |
|
"""Make sure that all the special tokens attributes of the tokenizer. |
|
|
|
(`tokenizer.mask_token`, `tokenizer.cls_token`, etc.) are in the |
|
vocabulary. |
|
|
|
Add the missing ones to the vocabulary if needed. |
|
|
|
Return: |
|
`int`: The number of tokens added in the vocabulary during the operation. |
|
""" |
|
actual_new_tokens = [] |
|
for token in self.all_special_tokens_extended: |
|
encoded = self.encoding.encode(token, allowed_special='all') |
|
if len(encoded) > 1: |
|
actual_new_tokens.append(token) |
|
|
|
return self.add_tokens(actual_new_tokens, special_tokens=True) |
|
|
|
def construct_logit_tensor(self, logprobs: Dict[str, |
|
float]) -> torch.Tensor: |
|
"""Construct tensor of shape (vocab_size,) mapping words to logprobs. |
|
|
|
Args: |
|
logprobs (Dict[str, float]): Dictionary mapping tokens to log probabilities assigned to them by the model. |
|
""" |
|
tensor = torch.tensor([min(logprobs.values()) - 1] * (self.vocab_size)) |
|
for k in logprobs: |
|
encoding = self(k)['input_ids'] |
|
idx = encoding[0] |
|
tensor[idx] = logprobs[k] |
|
return tensor |
|
|
|
|
|
TiktokenTokenizerWrapper.register_for_auto_class() |