Update README.md
Browse files
README.md
CHANGED
|
@@ -1,199 +1,91 @@
|
|
| 1 |
---
|
| 2 |
-
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
---
|
| 5 |
|
| 6 |
-
# Model Card for Model ID
|
| 7 |
|
| 8 |
-
|
|
|
|
|
|
|
| 9 |
|
|
|
|
|
|
|
|
|
|
| 10 |
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
-
|
| 13 |
|
| 14 |
-
|
| 15 |
|
| 16 |
-
|
|
|
|
| 17 |
|
| 18 |
-
|
|
|
|
| 19 |
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
| 25 |
-
- **License:** [More Information Needed]
|
| 26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
| 27 |
|
| 28 |
-
|
|
|
|
| 29 |
|
| 30 |
-
|
|
|
|
| 31 |
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
- **Demo [optional]:** [More Information Needed]
|
| 35 |
|
| 36 |
-
|
|
|
|
| 37 |
|
| 38 |
-
|
| 39 |
|
| 40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
|
| 42 |
-
|
| 43 |
|
| 44 |
-
|
|
|
|
| 45 |
|
| 46 |
-
### Downstream Use [optional]
|
| 47 |
-
|
| 48 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
| 49 |
-
|
| 50 |
-
[More Information Needed]
|
| 51 |
-
|
| 52 |
-
### Out-of-Scope Use
|
| 53 |
-
|
| 54 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
| 55 |
-
|
| 56 |
-
[More Information Needed]
|
| 57 |
-
|
| 58 |
-
## Bias, Risks, and Limitations
|
| 59 |
-
|
| 60 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
| 61 |
-
|
| 62 |
-
[More Information Needed]
|
| 63 |
-
|
| 64 |
-
### Recommendations
|
| 65 |
-
|
| 66 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
| 67 |
-
|
| 68 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
| 69 |
-
|
| 70 |
-
## How to Get Started with the Model
|
| 71 |
-
|
| 72 |
-
Use the code below to get started with the model.
|
| 73 |
-
|
| 74 |
-
[More Information Needed]
|
| 75 |
|
| 76 |
## Training Details
|
| 77 |
|
| 78 |
-
###
|
| 79 |
-
|
| 80 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
| 81 |
-
|
| 82 |
-
[More Information Needed]
|
| 83 |
-
|
| 84 |
-
### Training Procedure
|
| 85 |
-
|
| 86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
| 87 |
-
|
| 88 |
-
#### Preprocessing [optional]
|
| 89 |
-
|
| 90 |
-
[More Information Needed]
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
#### Training Hyperparameters
|
| 94 |
-
|
| 95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
| 96 |
-
|
| 97 |
-
#### Speeds, Sizes, Times [optional]
|
| 98 |
-
|
| 99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
| 100 |
-
|
| 101 |
-
[More Information Needed]
|
| 102 |
-
|
| 103 |
-
## Evaluation
|
| 104 |
-
|
| 105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
| 106 |
-
|
| 107 |
-
### Testing Data, Factors & Metrics
|
| 108 |
-
|
| 109 |
-
#### Testing Data
|
| 110 |
-
|
| 111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
| 112 |
-
|
| 113 |
-
[More Information Needed]
|
| 114 |
-
|
| 115 |
-
#### Factors
|
| 116 |
-
|
| 117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
| 118 |
-
|
| 119 |
-
[More Information Needed]
|
| 120 |
-
|
| 121 |
-
#### Metrics
|
| 122 |
-
|
| 123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
| 124 |
-
|
| 125 |
-
[More Information Needed]
|
| 126 |
-
|
| 127 |
-
### Results
|
| 128 |
-
|
| 129 |
-
[More Information Needed]
|
| 130 |
-
|
| 131 |
-
#### Summary
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
## Model Examination [optional]
|
| 136 |
-
|
| 137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
| 138 |
-
|
| 139 |
-
[More Information Needed]
|
| 140 |
-
|
| 141 |
-
## Environmental Impact
|
| 142 |
-
|
| 143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
| 144 |
-
|
| 145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
| 146 |
-
|
| 147 |
-
- **Hardware Type:** [More Information Needed]
|
| 148 |
-
- **Hours used:** [More Information Needed]
|
| 149 |
-
- **Cloud Provider:** [More Information Needed]
|
| 150 |
-
- **Compute Region:** [More Information Needed]
|
| 151 |
-
- **Carbon Emitted:** [More Information Needed]
|
| 152 |
-
|
| 153 |
-
## Technical Specifications [optional]
|
| 154 |
-
|
| 155 |
-
### Model Architecture and Objective
|
| 156 |
-
|
| 157 |
-
[More Information Needed]
|
| 158 |
-
|
| 159 |
-
### Compute Infrastructure
|
| 160 |
-
|
| 161 |
-
[More Information Needed]
|
| 162 |
-
|
| 163 |
-
#### Hardware
|
| 164 |
-
|
| 165 |
-
[More Information Needed]
|
| 166 |
-
|
| 167 |
-
#### Software
|
| 168 |
-
|
| 169 |
-
[More Information Needed]
|
| 170 |
-
|
| 171 |
-
## Citation [optional]
|
| 172 |
-
|
| 173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
| 174 |
-
|
| 175 |
-
**BibTeX:**
|
| 176 |
-
|
| 177 |
-
[More Information Needed]
|
| 178 |
-
|
| 179 |
-
**APA:**
|
| 180 |
-
|
| 181 |
-
[More Information Needed]
|
| 182 |
-
|
| 183 |
-
## Glossary [optional]
|
| 184 |
-
|
| 185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
| 186 |
-
|
| 187 |
-
[More Information Needed]
|
| 188 |
|
| 189 |
-
|
|
|
|
|
|
|
|
|
|
| 190 |
|
| 191 |
-
|
| 192 |
|
| 193 |
-
|
|
|
|
| 194 |
|
| 195 |
-
|
| 196 |
|
| 197 |
-
|
| 198 |
|
| 199 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
+
language: en
|
| 3 |
+
library_name: LogClassifier
|
| 4 |
+
tags:
|
| 5 |
+
- log-classification
|
| 6 |
+
- log feature
|
| 7 |
+
- log-similarity
|
| 8 |
+
- transformers
|
| 9 |
+
- AIOps
|
| 10 |
+
pipeline_tag: text-classification
|
| 11 |
---
|
| 12 |
|
|
|
|
| 13 |
|
| 14 |
+
# log-classifier-BERT-v1
|
| 15 |
+
log-classifier-v1 is a neural network-based log classification model, trained from BERTForSequenceClassification designed for use in network and device log mining tasks.
|
| 16 |
+
Developed by [Selector AI](https://www.selector.ai/)
|
| 17 |
|
| 18 |
+
## Model Usage (HuggingFace Transformers)
|
| 19 |
+
```python
|
| 20 |
+
from transformers import BertForSequenceClassification, BertTokenizer
|
| 21 |
|
| 22 |
+
# Load the model and tokenizer from Hugging Face
|
| 23 |
+
model = BertForSequenceClassification.from_pretrained("rahulm-selector/log-classifier-BERT-v1")
|
| 24 |
+
tokenizer = BertTokenizer.from_pretrained("rahulm-selector/log-classifier-BERT-v1")
|
| 25 |
|
| 26 |
+
import torch
|
| 27 |
|
| 28 |
+
model.eval()
|
| 29 |
|
| 30 |
+
# Step 2: Prepare the input data (Example log text)
|
| 31 |
+
log_text = "Error occurred while accessing the database."
|
| 32 |
|
| 33 |
+
# Tokenize the input data
|
| 34 |
+
inputs = tokenizer(log_text, return_tensors="pt", padding=True, truncation=True, max_length=128)
|
| 35 |
|
| 36 |
+
# Step 3: Make predictions
|
| 37 |
+
with torch.no_grad():
|
| 38 |
+
outputs = model(**inputs)
|
| 39 |
+
logits = outputs.logits
|
|
|
|
|
|
|
|
|
|
| 40 |
|
| 41 |
+
# Step 4: Get the predicted class (the class with the highest score)
|
| 42 |
+
predicted_class = torch.argmax(logits, dim=1).item()
|
| 43 |
|
| 44 |
+
# Example label mapping (you can load this from a JSON file or config)
|
| 45 |
+
label_mapping = model.config.id2label
|
| 46 |
|
| 47 |
+
# Get the event name from the predicted class
|
| 48 |
+
predicted_event = label_mapping[predicted_class]
|
|
|
|
| 49 |
|
| 50 |
+
print(f"Predicted Event: {predicted_event}")
|
| 51 |
+
```
|
| 52 |
|
| 53 |
+
## Background
|
| 54 |
|
| 55 |
+
The model focuses on structured and semi-structured log data, outputing around 60 different event categories. It is highly effective
|
| 56 |
+
for real-time log analysis, anomaly detection, and operational monitoring, helping organizations manage
|
| 57 |
+
large-scale network data by automatically classifying logs into predefined categories, facilitating faster
|
| 58 |
+
and more accurate diagnosis of network issues. The log-classifier-BERT-v1 model is designed to process logs as
|
| 59 |
+
input and output a corresponding classification.
|
| 60 |
|
| 61 |
+
## Intended uses
|
| 62 |
|
| 63 |
+
Our model is intended to be used as classifier. Given an input text (a log coming from a network/device), it outputs the corresponding event most associated with the log.
|
| 64 |
+
The possible events that can be classified are shown in [encoder.json](https://huggingface.co/rahulm-selector/log-classifier-v1/blob/main/encoder.json)
|
| 65 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
|
| 67 |
## Training Details
|
| 68 |
|
| 69 |
+
### Data
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
|
| 71 |
+
The model was trained on log data sourced from various network and infrastructure devices,
|
| 72 |
+
capturing crucial system events and performance metrics. Syslogs originated from network routers,
|
| 73 |
+
switches, firewalls, and servers, providing a rich dataset of operational insights including security events,
|
| 74 |
+
traffic patterns, and hardware health statuses.
|
| 75 |
|
| 76 |
+
### Train/Test Split
|
| 77 |
|
| 78 |
+
- **Train Data Size**: `~80K Logs`
|
| 79 |
+
- **Test Data Size**: `~20K Logs`
|
| 80 |
|
| 81 |
+
#### Hyper Parameters
|
| 82 |
|
| 83 |
+
The following hyperparameters were used during training to optimize the model's performance:
|
| 84 |
|
| 85 |
+
- **Batch Size**: `32`
|
| 86 |
+
- **Learning Rate**: `.001`
|
| 87 |
+
- **Optimizer**: `Adam`
|
| 88 |
+
- **Epochs**: `10`
|
| 89 |
+
- **Dropout Rate**: N/A
|
| 90 |
+
- **LSTM Hidden Dimension**: `384`
|
| 91 |
+
- **Embedding Dimension**: `384`
|