a2c-PandaReachDense-v2 / config.json
rahul-t-p's picture
Initial commit
13e18e5
raw
history blame
15.5 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f1d9bdff3a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f1d9bdf8b70>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674530969499720375, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAZQkMP8qI8jrOdRs/ZQkMP8qI8jrOdRs/ZQkMP8qI8jrOdRs/ZQkMP8qI8jrOdRs/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAbC6tv9IEoL8toZy/vezyvSeNlD9ZPLW/dXDauqzTSj/wqGm/avUbP1lYkT5iNlk+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABlCQw/yojyOs51Gz+52f88wUCSu75SojxlCQw/yojyOs51Gz+52f88wUCSu75SojxlCQw/yojyOs51Gz+52f88wUCSu75SojxlCQw/yojyOs51Gz+52f88wUCSu75SojyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.54701835 0.00185039 0.6072663 ]\n [0.54701835 0.00185039 0.6072663 ]\n [0.54701835 0.00185039 0.6072663 ]\n [0.54701835 0.00185039 0.6072663 ]]", "desired_goal": "[[-1.3529792 -1.2501471 -1.2236687 ]\n [-0.1186156 1.1605576 -1.4159042 ]\n [-0.00166656 0.79229236 -0.91273403]\n [ 0.6092135 0.28387716 0.21212152]]", "observation": "[[ 0.54701835 0.00185039 0.6072663 0.03123175 -0.00446329 0.01981485]\n [ 0.54701835 0.00185039 0.6072663 0.03123175 -0.00446329 0.01981485]\n [ 0.54701835 0.00185039 0.6072663 0.03123175 -0.00446329 0.01981485]\n [ 0.54701835 0.00185039 0.6072663 0.03123175 -0.00446329 0.01981485]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAf1MRvsmFkz3BsxU+ElCMPfCNAD2oJqw9haEBPsyA5L0RSkc9JVxEvV5o4b3F4Us+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.14192007 0.07203252 0.14619352]\n [ 0.0685121 0.03138536 0.08405811]\n [ 0.12659271 -0.11157379 0.04865462]\n [-0.04793944 -0.11006235 0.19910343]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI3pOHhVpTDcCUhpRSlIwBbJRLMowBdJRHQLOxNY1pCa91fZQoaAZoCWgPQwi9VkJ3SWQjwJSGlFKUaBVLMmgWR0CzsRWuDBdldX2UKGgGaAloD0MI7X2qCg3kK8CUhpRSlGgVSzJoFkdAs7D3E5yU93V9lChoBmgJaA9DCLNdoQ+WITDAlIaUUpRoFUsyaBZHQLOw2Grjo6l1fZQoaAZoCWgPQwjVPEfku3gwwJSGlFKUaBVLMmgWR0Czsah/3FkydX2UKGgGaAloD0MIvVZCd0nsHcCUhpRSlGgVSzJoFkdAs7GI2NvOyHV9lChoBmgJaA9DCKVlpN5TqS/AlIaUUpRoFUsyaBZHQLOxakfcN6R1fZQoaAZoCWgPQwj0+pP43PkSwJSGlFKUaBVLMmgWR0CzsUvkBCD3dX2UKGgGaAloD0MILLzLRXwnIcCUhpRSlGgVSzJoFkdAs7IVanrIHXV9lChoBmgJaA9DCBy3mJ8b4i7AlIaUUpRoFUsyaBZHQLOx9YbKifx1fZQoaAZoCWgPQwiBWgwepk0awJSGlFKUaBVLMmgWR0Czsdbf1pTNdX2UKGgGaAloD0MIxQPKplyJJMCUhpRSlGgVSzJoFkdAs7G4KkVN6HV9lChoBmgJaA9DCJrsn6cBkxLAlIaUUpRoFUsyaBZHQLOygjsUqQR1fZQoaAZoCWgPQwguxVVl34UXwJSGlFKUaBVLMmgWR0CzsmJa/yoXdX2UKGgGaAloD0MIEy15PC03IsCUhpRSlGgVSzJoFkdAs7JDvKEFn3V9lChoBmgJaA9DCA6IEFfO7iHAlIaUUpRoFUsyaBZHQLOyJRIjGDN1fZQoaAZoCWgPQwgAHlGhuqkWwJSGlFKUaBVLMmgWR0CzsvHUlRgrdX2UKGgGaAloD0MIq+0m+KYBJcCUhpRSlGgVSzJoFkdAs7LSDpTuOXV9lChoBmgJaA9DCLqfU5Cf9TDAlIaUUpRoFUsyaBZHQLOys2fkFOh1fZQoaAZoCWgPQwjmCBnIs4sXwJSGlFKUaBVLMmgWR0CzspTIJZ4fdX2UKGgGaAloD0MI662BrRJMIsCUhpRSlGgVSzJoFkdAs7Nlfb9IgHV9lChoBmgJaA9DCMI0DB8RcwHAlIaUUpRoFUsyaBZHQLOzRbah6B11fZQoaAZoCWgPQwjEtG/ur74pwJSGlFKUaBVLMmgWR0CzsycWTHKfdX2UKGgGaAloD0MIRzoDIy+TIMCUhpRSlGgVSzJoFkdAs7MIcOskp3V9lChoBmgJaA9DCPPHtDaNjRTAlIaUUpRoFUsyaBZHQLOz1VnmJWN1fZQoaAZoCWgPQwhzKhkAqvAtwJSGlFKUaBVLMmgWR0Czs7WDUVi4dX2UKGgGaAloD0MI/Bu0Vx/fEsCUhpRSlGgVSzJoFkdAs7OW7pV0cXV9lChoBmgJaA9DCAa9N4YAYDLAlIaUUpRoFUsyaBZHQLOzeDvmYBx1fZQoaAZoCWgPQwgZda29T1UowJSGlFKUaBVLMmgWR0CztEQ7HQyAdX2UKGgGaAloD0MIKo2Y2ed5JMCUhpRSlGgVSzJoFkdAs7QkZvUBn3V9lChoBmgJaA9DCKCnAYOkDyPAlIaUUpRoFUsyaBZHQLO0BcO9WZJ1fZQoaAZoCWgPQwgkl/+QflsLwJSGlFKUaBVLMmgWR0Czs+cVUModdX2UKGgGaAloD0MI4zPZP0+THcCUhpRSlGgVSzJoFkdAs7S2r+5vtXV9lChoBmgJaA9DCH6nyYy3hSLAlIaUUpRoFUsyaBZHQLO0ltHxz7x1fZQoaAZoCWgPQwhe8j/5u/sxwJSGlFKUaBVLMmgWR0CztHguAZsLdX2UKGgGaAloD0MIFY21v7NlIMCUhpRSlGgVSzJoFkdAs7RZjEvTPXV9lChoBmgJaA9DCFxxcVRuwgzAlIaUUpRoFUsyaBZHQLO1NwNLDht1fZQoaAZoCWgPQwhYG2MnvHQSwJSGlFKUaBVLMmgWR0CztRcgZCOWdX2UKGgGaAloD0MIeuI5W0BoK8CUhpRSlGgVSzJoFkdAs7T4mE4//3V9lChoBmgJaA9DCBVVv9L5WC7AlIaUUpRoFUsyaBZHQLO02gtvn8t1fZQoaAZoCWgPQwgRct7/x4EtwJSGlFKUaBVLMmgWR0CztamDpTuOdX2UKGgGaAloD0MIYJLKFHOwCsCUhpRSlGgVSzJoFkdAs7WJs2vSt3V9lChoBmgJaA9DCINMMnIWhjDAlIaUUpRoFUsyaBZHQLO1axJd0JZ1fZQoaAZoCWgPQwhbXU4JiGkwwJSGlFKUaBVLMmgWR0CztUxi9ZiedX2UKGgGaAloD0MIVaaYg6ALIsCUhpRSlGgVSzJoFkdAs7Yjko4MnnV9lChoBmgJaA9DCPm9TX/2YxTAlIaUUpRoFUsyaBZHQLO2A7T2FnJ1fZQoaAZoCWgPQwjv42iOrEwZwJSGlFKUaBVLMmgWR0CzteUkGA09dX2UKGgGaAloD0MIHm0csRa/MsCUhpRSlGgVSzJoFkdAs7XGhg3Lm3V9lChoBmgJaA9DCEW7Cik/wSjAlIaUUpRoFUsyaBZHQLO2juanaWZ1fZQoaAZoCWgPQwgMAiuHFjkOwJSGlFKUaBVLMmgWR0Cztm8MEzO5dX2UKGgGaAloD0MIlBeZgF8vMMCUhpRSlGgVSzJoFkdAs7ZQZeiSJXV9lChoBmgJaA9DCK/sgsE1Zx3AlIaUUpRoFUsyaBZHQLO2MbobGWF1fZQoaAZoCWgPQwgt6SgHs0EuwJSGlFKUaBVLMmgWR0CztwgRf4RFdX2UKGgGaAloD0MIP+CBAYRPCsCUhpRSlGgVSzJoFkdAs7boNy5qd3V9lChoBmgJaA9DCP8DrFW7BjHAlIaUUpRoFUsyaBZHQLO2yZlnRLN1fZQoaAZoCWgPQwjw4CcOoJ8TwJSGlFKUaBVLMmgWR0CztqrkGRmsdX2UKGgGaAloD0MIwqONI9aqJcCUhpRSlGgVSzJoFkdAs7dyudPLxXV9lChoBmgJaA9DCF8M5US7+h7AlIaUUpRoFUsyaBZHQLO3UtkFwDN1fZQoaAZoCWgPQwjgZYaNsp4fwJSGlFKUaBVLMmgWR0CztzQw9JSSdX2UKGgGaAloD0MI8FLqknE8JcCUhpRSlGgVSzJoFkdAs7cVgLJCB3V9lChoBmgJaA9DCH0jumddiyXAlIaUUpRoFUsyaBZHQLO37KQ7tAt1fZQoaAZoCWgPQwgps0EmGSkzwJSGlFKUaBVLMmgWR0Czt8zru6VddX2UKGgGaAloD0MIsyRATS0bLsCUhpRSlGgVSzJoFkdAs7euSKWLP3V9lChoBmgJaA9DCOSG3023oDPAlIaUUpRoFUsyaBZHQLO3j5hBqsV1fZQoaAZoCWgPQwhbejTVk4kzwJSGlFKUaBVLMmgWR0CzuGyVB2OidX2UKGgGaAloD0MIKpFEL6M4GMCUhpRSlGgVSzJoFkdAs7hNB5X2d3V9lChoBmgJaA9DCP4qwHeb3ybAlIaUUpRoFUsyaBZHQLO4LqCHymR1fZQoaAZoCWgPQwhlHCPZI1QvwJSGlFKUaBVLMmgWR0CzuA/va11GdX2UKGgGaAloD0MI6Gor9pc9MMCUhpRSlGgVSzJoFkdAs7jzUQTVUnV9lChoBmgJaA9DCBlW8UbmQTLAlIaUUpRoFUsyaBZHQLO403Dej211fZQoaAZoCWgPQwgrGJXUCSgXwJSGlFKUaBVLMmgWR0CzuLTQRf4RdX2UKGgGaAloD0MI+mLvxRetLMCUhpRSlGgVSzJoFkdAs7iWqkuYhXV9lChoBmgJaA9DCHEhj+BG+irAlIaUUpRoFUsyaBZHQLO5YQHRkVh1fZQoaAZoCWgPQwiZnUXvVAQwwJSGlFKUaBVLMmgWR0CzuUEiD/VBdX2UKGgGaAloD0MIrRdDOdHmJcCUhpRSlGgVSzJoFkdAs7kigSOBD3V9lChoBmgJaA9DCHWuKCUEIyTAlIaUUpRoFUsyaBZHQLO5A9kSVW11fZQoaAZoCWgPQwgIzEOmfGg9wJSGlFKUaBVLMmgWR0CzufQ8r7O3dX2UKGgGaAloD0MI2ZlC5zWWHsCUhpRSlGgVSzJoFkdAs7nUX3xnWnV9lChoBmgJaA9DCEeP39v05xvAlIaUUpRoFUsyaBZHQLO5tdJJ5FB1fZQoaAZoCWgPQwhfC3pvDGkxwJSGlFKUaBVLMmgWR0CzuZfrKNhmdX2UKGgGaAloD0MIT3Yzox/9IcCUhpRSlGgVSzJoFkdAs7qWAxzq8nV9lChoBmgJaA9DCEHXvoBeGC3AlIaUUpRoFUsyaBZHQLO6dq2SdOJ1fZQoaAZoCWgPQwhB1H0AUisQwJSGlFKUaBVLMmgWR0Czulg62fCidX2UKGgGaAloD0MIBfnZyHXLLsCUhpRSlGgVSzJoFkdAs7o6OT7l73V9lChoBmgJaA9DCOc6jbRUPjfAlIaUUpRoFUsyaBZHQLO7Ntsenyd1fZQoaAZoCWgPQwgZkpOJW+EywJSGlFKUaBVLMmgWR0CzuxebiIcjdX2UKGgGaAloD0MINbdCWI01LsCUhpRSlGgVSzJoFkdAs7r5e3QUpXV9lChoBmgJaA9DCNQLPs3J6yfAlIaUUpRoFUsyaBZHQLO62vWpZOl1fZQoaAZoCWgPQwiyaDo7GSQswJSGlFKUaBVLMmgWR0Czu7JtrKvFdX2UKGgGaAloD0MIILOz6J0CPsCUhpRSlGgVSzJoFkdAs7uSmFaje3V9lChoBmgJaA9DCBgkfVpFxyTAlIaUUpRoFUsyaBZHQLO7dAq/dqN1fZQoaAZoCWgPQwjtRbQdU+8wwJSGlFKUaBVLMmgWR0Czu1VyJbdKdX2UKGgGaAloD0MIUDblCu+CKcCUhpRSlGgVSzJoFkdAs7xClZX+2nV9lChoBmgJaA9DCIi4OZUMyCDAlIaUUpRoFUsyaBZHQLO8IrOJLuh1fZQoaAZoCWgPQwh9IeS8/9ctwJSGlFKUaBVLMmgWR0CzvAQymALBdX2UKGgGaAloD0MIlGx1OSXIN8CUhpRSlGgVSzJoFkdAs7vliZv1lHV9lChoBmgJaA9DCBsRjINL5y3AlIaUUpRoFUsyaBZHQLO8zvuw5eZ1fZQoaAZoCWgPQwiGyypsBtgRwJSGlFKUaBVLMmgWR0CzvK88cMmXdX2UKGgGaAloD0MIavrsgOsaN8CUhpRSlGgVSzJoFkdAs7yRKGtZFHV9lChoBmgJaA9DCEuTUtDtJSjAlIaUUpRoFUsyaBZHQLO8cnqmj0t1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 100000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}