|
import torch |
|
import numpy as np |
|
import random |
|
import matplotlib.pyplot as plt |
|
import matplotlib.patches as patches |
|
from shapely.geometry import Point, box |
|
import networkx as nx |
|
from copy import deepcopy |
|
from itertools import groupby |
|
|
|
def move_to_device(inputs, device): |
|
if hasattr(inputs, "keys"): |
|
return {k: move_to_device(v, device) for k, v in inputs.items()} |
|
elif isinstance(inputs, list): |
|
return [move_to_device(v, device) for v in inputs] |
|
elif isinstance(inputs, tuple): |
|
return tuple([move_to_device(v, device) for v in inputs]) |
|
elif isinstance(inputs, np.ndarray): |
|
return torch.from_numpy(inputs).to(device) |
|
else: |
|
return inputs.to(device) |
|
|
|
class UnionFind: |
|
def __init__(self, n): |
|
self.parent = list(range(n)) |
|
self.size = [1] * n |
|
self.num_components = n |
|
|
|
@classmethod |
|
def from_adj_matrix(cls, adj_matrix): |
|
ufds = cls(adj_matrix.shape[0]) |
|
for i in range(adj_matrix.shape[0]): |
|
for j in range(adj_matrix.shape[1]): |
|
if adj_matrix[i, j] > 0: |
|
ufds.unite(i, j) |
|
return ufds |
|
|
|
@classmethod |
|
def from_adj_list(cls, adj_list): |
|
ufds = cls(len(adj_list)) |
|
for i in range(len(adj_list)): |
|
for j in adj_list[i]: |
|
ufds.unite(i, j) |
|
return ufds |
|
|
|
@classmethod |
|
def from_edge_list(cls, edge_list, num_nodes): |
|
ufds = cls(num_nodes) |
|
for edge in edge_list: |
|
ufds.unite(edge[0], edge[1]) |
|
return ufds |
|
|
|
def find(self, x): |
|
if self.parent[x] == x: |
|
return x |
|
self.parent[x] = self.find(self.parent[x]) |
|
return self.parent[x] |
|
|
|
def unite(self, x, y): |
|
x = self.find(x) |
|
y = self.find(y) |
|
if x != y: |
|
if self.size[x] < self.size[y]: |
|
x, y = y, x |
|
self.parent[y] = x |
|
self.size[x] += self.size[y] |
|
self.num_components -= 1 |
|
|
|
def get_components_of(self, x): |
|
x = self.find(x) |
|
return [i for i in range(len(self.parent)) if self.find(i) == x] |
|
|
|
def are_connected(self, x, y): |
|
return self.find(x) == self.find(y) |
|
|
|
def get_size(self, x): |
|
return self.size[self.find(x)] |
|
|
|
def get_num_components(self): |
|
return self.num_components |
|
|
|
def get_labels_for_connected_components(self): |
|
map_parent_to_label = {} |
|
labels = [] |
|
for i in range(len(self.parent)): |
|
parent = self.find(i) |
|
if parent not in map_parent_to_label: |
|
map_parent_to_label[parent] = len(map_parent_to_label) |
|
labels.append(map_parent_to_label[parent]) |
|
return labels |
|
|
|
def visualise_single_image_prediction(image_as_np_array, predictions, filename): |
|
h, w = image_as_np_array.shape[:2] |
|
if h > w: |
|
figure, subplot = plt.subplots(1, 1, figsize=(10, 10 * h / w)) |
|
else: |
|
figure, subplot = plt.subplots(1, 1, figsize=(10 * w / h, 10)) |
|
subplot.imshow(image_as_np_array) |
|
plot_bboxes(subplot, predictions["panels"], color="green") |
|
plot_bboxes(subplot, predictions["texts"], color="red", add_index=True) |
|
plot_bboxes(subplot, predictions["characters"], color="blue") |
|
|
|
COLOURS = [ |
|
"#b7ff51", |
|
"#f50a8f", |
|
"#4b13b6", |
|
"#ddaa34", |
|
"#bea2a2", |
|
] |
|
colour_index = 0 |
|
character_cluster_labels = predictions["character_cluster_labels"] |
|
unique_label_sorted_by_frequency = sorted(list(set(character_cluster_labels)), key=lambda x: character_cluster_labels.count(x), reverse=True) |
|
for label in unique_label_sorted_by_frequency: |
|
root = None |
|
others = [] |
|
for i in range(len(predictions["characters"])): |
|
if character_cluster_labels[i] == label: |
|
if root is None: |
|
root = i |
|
else: |
|
others.append(i) |
|
if colour_index >= len(COLOURS): |
|
random_colour = COLOURS[0] |
|
while random_colour in COLOURS: |
|
random_colour = "#" + "".join([random.choice("0123456789ABCDEF") for j in range(6)]) |
|
else: |
|
random_colour = COLOURS[colour_index] |
|
colour_index += 1 |
|
bbox_i = predictions["characters"][root] |
|
x1 = bbox_i[0] + (bbox_i[2] - bbox_i[0]) / 2 |
|
y1 = bbox_i[1] + (bbox_i[3] - bbox_i[1]) / 2 |
|
subplot.plot([x1], [y1], color=random_colour, marker="o", markersize=5) |
|
for j in others: |
|
|
|
bbox_j = predictions["characters"][j] |
|
x1 = bbox_i[0] + (bbox_i[2] - bbox_i[0]) / 2 |
|
y1 = bbox_i[1] + (bbox_i[3] - bbox_i[1]) / 2 |
|
x2 = bbox_j[0] + (bbox_j[2] - bbox_j[0]) / 2 |
|
y2 = bbox_j[1] + (bbox_j[3] - bbox_j[1]) / 2 |
|
subplot.plot([x1, x2], [y1, y2], color=random_colour, linewidth=2) |
|
subplot.plot([x2], [y2], color=random_colour, marker="o", markersize=5) |
|
|
|
for (i, j) in predictions["text_character_associations"]: |
|
score = predictions["dialog_confidences"][i] |
|
bbox_i = predictions["texts"][i] |
|
bbox_j = predictions["characters"][j] |
|
x1 = bbox_i[0] + (bbox_i[2] - bbox_i[0]) / 2 |
|
y1 = bbox_i[1] + (bbox_i[3] - bbox_i[1]) / 2 |
|
x2 = bbox_j[0] + (bbox_j[2] - bbox_j[0]) / 2 |
|
y2 = bbox_j[1] + (bbox_j[3] - bbox_j[1]) / 2 |
|
subplot.plot([x1, x2], [y1, y2], color="red", linewidth=2, linestyle="dashed", alpha=score) |
|
|
|
subplot.axis("off") |
|
if filename is not None: |
|
plt.savefig(filename, bbox_inches="tight", pad_inches=0) |
|
|
|
figure.canvas.draw() |
|
image = np.array(figure.canvas.renderer._renderer) |
|
plt.close() |
|
return image |
|
|
|
def plot_bboxes(subplot, bboxes, color="red", add_index=False): |
|
for id, bbox in enumerate(bboxes): |
|
w = bbox[2] - bbox[0] |
|
h = bbox[3] - bbox[1] |
|
rect = patches.Rectangle( |
|
bbox[:2], w, h, linewidth=1, edgecolor=color, facecolor="none", linestyle="solid" |
|
) |
|
subplot.add_patch(rect) |
|
if add_index: |
|
cx, cy = bbox[0] + w / 2, bbox[1] + h / 2 |
|
subplot.text(cx, cy, str(id), color=color, fontsize=10, ha="center", va="center") |
|
|
|
def sort_panels(rects): |
|
before_rects = convert_to_list_of_lists(rects) |
|
|
|
rects = [erode_rectangle(rect, 0.05) for rect in before_rects] |
|
G = nx.DiGraph() |
|
G.add_nodes_from(range(len(rects))) |
|
for i in range(len(rects)): |
|
for j in range(len(rects)): |
|
if i == j: |
|
continue |
|
if is_there_a_directed_edge(i, j, rects): |
|
G.add_edge(i, j, weight=get_distance(rects[i], rects[j])) |
|
else: |
|
G.add_edge(j, i, weight=get_distance(rects[i], rects[j])) |
|
while True: |
|
cycles = sorted(nx.simple_cycles(G)) |
|
cycles = [cycle for cycle in cycles if len(cycle) > 1] |
|
if len(cycles) == 0: |
|
break |
|
cycle = cycles[0] |
|
edges = [e for e in zip(cycle, cycle[1:] + cycle[:1])] |
|
max_cyclic_edge = max(edges, key=lambda x: G.edges[x]["weight"]) |
|
G.remove_edge(*max_cyclic_edge) |
|
return list(nx.topological_sort(G)) |
|
|
|
def is_strictly_above(rectA, rectB): |
|
x1A, y1A, x2A, y2A = rectA |
|
x1B, y1B, x2B, y2B = rectB |
|
return y2A < y1B |
|
|
|
def is_strictly_below(rectA, rectB): |
|
x1A, y1A, x2A, y2A = rectA |
|
x1B, y1B, x2B, y2B = rectB |
|
return y2B < y1A |
|
|
|
def is_strictly_left_of(rectA, rectB): |
|
x1A, y1A, x2A, y2A = rectA |
|
x1B, y1B, x2B, y2B = rectB |
|
return x2A < x1B |
|
|
|
def is_strictly_right_of(rectA, rectB): |
|
x1A, y1A, x2A, y2A = rectA |
|
x1B, y1B, x2B, y2B = rectB |
|
return x2B < x1A |
|
|
|
def intersects(rectA, rectB): |
|
return box(*rectA).intersects(box(*rectB)) |
|
|
|
def is_there_a_directed_edge(a, b, rects): |
|
rectA = rects[a] |
|
rectB = rects[b] |
|
centre_of_A = [rectA[0] + (rectA[2] - rectA[0]) / 2, rectA[1] + (rectA[3] - rectA[1]) / 2] |
|
centre_of_B = [rectB[0] + (rectB[2] - rectB[0]) / 2, rectB[1] + (rectB[3] - rectB[1]) / 2] |
|
if np.allclose(np.array(centre_of_A), np.array(centre_of_B)): |
|
return box(*rectA).area > (box(*rectB)).area |
|
copy_A = [rectA[0], rectA[1], rectA[2], rectA[3]] |
|
copy_B = [rectB[0], rectB[1], rectB[2], rectB[3]] |
|
while True: |
|
if is_strictly_above(copy_A, copy_B) and not is_strictly_left_of(copy_A, copy_B): |
|
return 1 |
|
if is_strictly_above(copy_B, copy_A) and not is_strictly_left_of(copy_B, copy_A): |
|
return 0 |
|
if is_strictly_right_of(copy_A, copy_B) and not is_strictly_below(copy_A, copy_B): |
|
return 1 |
|
if is_strictly_right_of(copy_B, copy_A) and not is_strictly_below(copy_B, copy_A): |
|
return 0 |
|
if is_strictly_below(copy_A, copy_B) and is_strictly_right_of(copy_A, copy_B): |
|
return use_cuts_to_determine_edge_from_a_to_b(a, b, rects) |
|
if is_strictly_below(copy_B, copy_A) and is_strictly_right_of(copy_B, copy_A): |
|
return use_cuts_to_determine_edge_from_a_to_b(a, b, rects) |
|
|
|
copy_A = erode_rectangle(copy_A, 0.05) |
|
copy_B = erode_rectangle(copy_B, 0.05) |
|
|
|
def get_distance(rectA, rectB): |
|
return box(rectA[0], rectA[1], rectA[2], rectA[3]).distance(box(rectB[0], rectB[1], rectB[2], rectB[3])) |
|
|
|
def use_cuts_to_determine_edge_from_a_to_b(a, b, rects): |
|
rects = deepcopy(rects) |
|
while True: |
|
xmin, ymin, xmax, ymax = min(rects[a][0], rects[b][0]), min(rects[a][1], rects[b][1]), max(rects[a][2], rects[b][2]), max(rects[a][3], rects[b][3]) |
|
rect_index = [i for i in range(len(rects)) if intersects(rects[i], [xmin, ymin, xmax, ymax])] |
|
rects_copy = [rect for rect in rects if intersects(rect, [xmin, ymin, xmax, ymax])] |
|
|
|
|
|
overlapping_y_ranges = merge_overlapping_ranges([(y1, y2) for x1, y1, x2, y2 in rects_copy]) |
|
panel_index_to_split = {} |
|
for split_index, (y1, y2) in enumerate(overlapping_y_ranges): |
|
for i, index in enumerate(rect_index): |
|
if y1 <= rects_copy[i][1] <= rects_copy[i][3] <= y2: |
|
panel_index_to_split[index] = split_index |
|
|
|
if panel_index_to_split[a] != panel_index_to_split[b]: |
|
return panel_index_to_split[a] < panel_index_to_split[b] |
|
|
|
|
|
overlapping_x_ranges = merge_overlapping_ranges([(x1, x2) for x1, y1, x2, y2 in rects_copy]) |
|
panel_index_to_split = {} |
|
for split_index, (x1, x2) in enumerate(overlapping_x_ranges[::-1]): |
|
for i, index in enumerate(rect_index): |
|
if x1 <= rects_copy[i][0] <= rects_copy[i][2] <= x2: |
|
panel_index_to_split[index] = split_index |
|
if panel_index_to_split[a] != panel_index_to_split[b]: |
|
return panel_index_to_split[a] < panel_index_to_split[b] |
|
|
|
|
|
rects = [erode_rectangle(rect, 0.05) for rect in rects] |
|
|
|
def erode_rectangle(bbox, erosion_factor): |
|
x1, y1, x2, y2 = bbox |
|
w, h = x2 - x1, y2 - y1 |
|
cx, cy = x1 + w / 2, y1 + h / 2 |
|
if w < h: |
|
aspect_ratio = w / h |
|
erosion_factor_width = erosion_factor * aspect_ratio |
|
erosion_factor_height = erosion_factor |
|
else: |
|
aspect_ratio = h / w |
|
erosion_factor_width = erosion_factor |
|
erosion_factor_height = erosion_factor * aspect_ratio |
|
w = w - w * erosion_factor_width |
|
h = h - h * erosion_factor_height |
|
x1, y1, x2, y2 = cx - w / 2, cy - h / 2, cx + w / 2, cy + h / 2 |
|
return [x1, y1, x2, y2] |
|
|
|
def merge_overlapping_ranges(ranges): |
|
""" |
|
ranges: list of tuples (x1, x2) |
|
""" |
|
if len(ranges) == 0: |
|
return [] |
|
ranges = sorted(ranges, key=lambda x: x[0]) |
|
merged_ranges = [] |
|
for i, r in enumerate(ranges): |
|
if i == 0: |
|
prev_x1, prev_x2 = r |
|
continue |
|
x1, x2 = r |
|
if x1 > prev_x2: |
|
merged_ranges.append((prev_x1, prev_x2)) |
|
prev_x1, prev_x2 = x1, x2 |
|
else: |
|
prev_x2 = max(prev_x2, x2) |
|
merged_ranges.append((prev_x1, prev_x2)) |
|
return merged_ranges |
|
|
|
def sort_text_boxes_in_reading_order(text_bboxes, sorted_panel_bboxes): |
|
text_bboxes = convert_to_list_of_lists(text_bboxes) |
|
sorted_panel_bboxes = convert_to_list_of_lists(sorted_panel_bboxes) |
|
|
|
if len(text_bboxes) == 0: |
|
return [] |
|
|
|
def indices_of_same_elements(nums): |
|
groups = groupby(range(len(nums)), key=lambda i: nums[i]) |
|
return [list(indices) for _, indices in groups] |
|
|
|
panel_id_for_text = get_text_to_panel_mapping(text_bboxes, sorted_panel_bboxes) |
|
indices_of_texts = list(range(len(text_bboxes))) |
|
indices_of_texts, panel_id_for_text = zip(*sorted(zip(indices_of_texts, panel_id_for_text), key=lambda x: x[1])) |
|
indices_of_texts = list(indices_of_texts) |
|
grouped_indices = indices_of_same_elements(panel_id_for_text) |
|
for group in grouped_indices: |
|
subset_of_text_indices = [indices_of_texts[i] for i in group] |
|
text_bboxes_of_subset = [text_bboxes[i] for i in subset_of_text_indices] |
|
sorted_subset_indices = sort_texts_within_panel(text_bboxes_of_subset) |
|
indices_of_texts[group[0] : group[-1] + 1] = [subset_of_text_indices[i] for i in sorted_subset_indices] |
|
return indices_of_texts |
|
|
|
def get_text_to_panel_mapping(text_bboxes, sorted_panel_bboxes): |
|
text_to_panel_mapping = [] |
|
for text_bbox in text_bboxes: |
|
shapely_text_polygon = box(*text_bbox) |
|
all_intersections = [] |
|
all_distances = [] |
|
if len(sorted_panel_bboxes) == 0: |
|
text_to_panel_mapping.append(-1) |
|
continue |
|
for j, annotation in enumerate(sorted_panel_bboxes): |
|
shapely_annotation_polygon = box(*annotation) |
|
if shapely_text_polygon.intersects(shapely_annotation_polygon): |
|
all_intersections.append((shapely_text_polygon.intersection(shapely_annotation_polygon).area, j)) |
|
all_distances.append((shapely_text_polygon.distance(shapely_annotation_polygon), j)) |
|
if len(all_intersections) == 0: |
|
text_to_panel_mapping.append(min(all_distances, key=lambda x: x[0])[1]) |
|
else: |
|
text_to_panel_mapping.append(max(all_intersections, key=lambda x: x[0])[1]) |
|
return text_to_panel_mapping |
|
|
|
def sort_texts_within_panel(rects): |
|
smallest_y = float("inf") |
|
greatest_x = float("-inf") |
|
for i, rect in enumerate(rects): |
|
x1, y1, x2, y2 = rect |
|
smallest_y = min(smallest_y, y1) |
|
greatest_x = max(greatest_x, x2) |
|
|
|
reference_point = Point(greatest_x, smallest_y) |
|
|
|
polygons_and_index = [] |
|
for i, rect in enumerate(rects): |
|
x1, y1, x2, y2 = rect |
|
polygons_and_index.append((box(x1,y1,x2,y2), i)) |
|
|
|
polygons_and_index = sorted(polygons_and_index, key=lambda x: reference_point.distance(x[0])) |
|
indices = [x[1] for x in polygons_and_index] |
|
return indices |
|
|
|
def x1y1wh_to_x1y1x2y2(bbox): |
|
x1, y1, w, h = bbox |
|
return [x1, y1, x1 + w, y1 + h] |
|
|
|
def x1y1x2y2_to_xywh(bbox): |
|
x1, y1, x2, y2 = bbox |
|
return [x1, y1, x2 - x1, y2 - y1] |
|
|
|
def convert_to_list_of_lists(rects): |
|
if isinstance(rects, torch.Tensor): |
|
return rects.tolist() |
|
if isinstance(rects, np.ndarray): |
|
return rects.tolist() |
|
return [[a, b, c, d] for a, b, c, d in rects] |