chore: improve docs
Browse files- README.md +47 -3
- figures/graph.png +0 -0
- figures/test.png +0 -0
README.md
CHANGED
@@ -1,3 +1,47 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# BERT pt-BR Persons
|
2 |
+
|
3 |
+
This model is fine-tuned to primarily identify Brazilian names, ignoring street and place names, even if they contain a person's name.
|
4 |
+
|
5 |
+
![test](./figures/test.png)
|
6 |
+
|
7 |
+
## Basic Usage
|
8 |
+
|
9 |
+
```python
|
10 |
+
from transformers import pipeline, BertForTokenClassification, BertTokenizerFast
|
11 |
+
|
12 |
+
model_name = "rafola/BERT-base-pt-BR-person"
|
13 |
+
model = BertForTokenClassification.from_pretrained(model_name)
|
14 |
+
tokenizer = BertTokenizerFast.from_pretrained(model_name,use_fast=True)
|
15 |
+
|
16 |
+
nlp = pipeline("ner", model=model, tokenizer=tokenizer)
|
17 |
+
|
18 |
+
result=nlp("Como já dizia seu Zé Ricardo, A Luiza sempre vai atrás de uma encrenca, mesmo com todo o cuidado de tia Eliana com ela.")
|
19 |
+
|
20 |
+
print(result)
|
21 |
+
```
|
22 |
+
|
23 |
+
## Citations
|
24 |
+
|
25 |
+
If you use our work, please cite:
|
26 |
+
|
27 |
+
```
|
28 |
+
@misc{rafola2025BERTptBRpersons,
|
29 |
+
author = {Rafael Vitor Krueger},
|
30 |
+
title = {BERT pt-BR Persons: Fine-tuned model to identify brazilian person names},
|
31 |
+
year = {2025},
|
32 |
+
url = {https://huggingface.co/rafola/BERT-base-pt-BR-person},
|
33 |
+
}
|
34 |
+
```
|
35 |
+
|
36 |
+
This model has been treined using as base: [neuralmind/bert-base-portuguese-cased](https://huggingface.co/neuralmind/bert-base-portuguese-cased)
|
37 |
+
|
38 |
+
```
|
39 |
+
@inproceedings{souza2020bertimbau,
|
40 |
+
author = {F{\'a}bio Souza and
|
41 |
+
Rodrigo Nogueira and
|
42 |
+
Roberto Lotufo},
|
43 |
+
title = {{BERT}imbau: pretrained {BERT} models for {B}razilian {P}ortuguese},
|
44 |
+
booktitle = {9th Brazilian Conference on Intelligent Systems, {BRACIS}, Rio Grande do Sul, Brazil, October 20-23 (to appear)},
|
45 |
+
year = {2020}
|
46 |
+
}
|
47 |
+
```
|
figures/graph.png
ADDED
![]() |
figures/test.png
ADDED
![]() |