rafind commited on
Commit
51df9f0
·
1 Parent(s): cc44483

My First PPO MlpPolicy model

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO MlpPolicy
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 239.87 +/- 22.19
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO MlpPolicy** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO MlpPolicy** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f30cd2185e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f30cd218670>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f30cd218700>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f30cd218790>", "_build": "<function ActorCriticPolicy._build at 0x7f30cd218820>", "forward": "<function ActorCriticPolicy.forward at 0x7f30cd2188b0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f30cd218940>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f30cd2189d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f30cd218a60>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f30cd218af0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f30cd218b80>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f30cd218c10>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f30cd2198c0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678303183267269277, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAFYBxT4w7ea9moLrO55LuLqiMLy+2CxCOwAAAAAAAAAArTgjvs5Ktj0i46E+/NqFvvaomT3rQc+6AAAAAAAAAABNQk29ri+9uuTOKbwSlO085ql5Ox9CErYAAIA/AACAPxo1fT19m5c+6Z1FPHUCcb6QRbA8GFN1vAAAAAAAAAAAUwfWPk2kML0efjS91+6svOwyADt65Yg9AACAPwAAAADGUT2+uWEFPjYQRD7RW5q+RVYrPLyND70AAAAAAAAAACA8Mb72mjQ7+EX+sLx45rFpOPO8AZKPMgAAgD8AAIA/TZBRPh857zxto027YvDaubsZhj71ueu6AACAPwAAgD8Ko7w+iuVeP9t+lj6NgZa+XWojPiIZAD0AAAAAAAAAAHrUsz6lHgs/vT4EPgZmOb7Mwdc9cRLHPAAAAAAAAAAApkWtvXE7OLsAROK6DDyBPMKFnjwFrF+9AACAPwAAgD/NsWI+yFPLvC3P1z3XNjK8XbEyvvH1Cb0AAIA/AACAP9P0hz5U3TK9YMx4PccVC7yUzJ2+1QnKvAAAgD8AAIA/E6EiPigAfj8r03s+WzDSvmaT3D2QElq8AAAAAAAAAADaHES+iNvOvL9PhbuPcQe6BeQ1PuFasjoAAIA/AACAPw0V/j0w7Qo/jt6mPSqJZr5mOUI9BwYUPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVcxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI3QcgtQm2YECUhpRSlIwBbJRN6AOMAXSUR0Ccgq/YraufdX2UKGgGaAloD0MI8OAnDiCSbkCUhpRSlGgVTXEBaBZHQJyDxiYsunN1fZQoaAZoCWgPQwhFgxQ8RZhwQJSGlFKUaBVNCgFoFkdAnIW69oN/fHV9lChoBmgJaA9DCHKL+bkhu21AlIaUUpRoFUvyaBZHQJyGyQXAM2F1fZQoaAZoCWgPQwgI5ujx+zBvQJSGlFKUaBVNDwFoFkdAnIjnJPqLTHV9lChoBmgJaA9DCK7TSEtlc3BAlIaUUpRoFU0EAWgWR0CciiyLhrFgdX2UKGgGaAloD0MI0T/BxYpPbUCUhpRSlGgVTQUBaBZHQJyKciKR+0B1fZQoaAZoCWgPQwinP/uRIp9wQJSGlFKUaBVL/WgWR0CcitYlIEr5dX2UKGgGaAloD0MIuwopP6nsW0CUhpRSlGgVTegDaBZHQJyLVYB/7SB1fZQoaAZoCWgPQwh56/zb5dFxQJSGlFKUaBVNBgJoFkdAnIvJqVQhwHV9lChoBmgJaA9DCLt7gO7L4FlAlIaUUpRoFU3oA2gWR0CcjK7rLQokdX2UKGgGaAloD0MIK702G+txcUCUhpRSlGgVS+xoFkdAnI2pYT0xunV9lChoBmgJaA9DCNaryOgAO2tAlIaUUpRoFU0RAWgWR0CcjobRWtEHdX2UKGgGaAloD0MIQ46tZwhtY0CUhpRSlGgVTegDaBZHQJyPnEDQqqh1fZQoaAZoCWgPQwgb1H5rJ89cQJSGlFKUaBVN6ANoFkdAnI/bAUL2H3V9lChoBmgJaA9DCLA5B88EwW1AlIaUUpRoFU1HAWgWR0CckUB7u2JBdX2UKGgGaAloD0MIiSgmb4DRJ0CUhpRSlGgVTR0BaBZHQJyRnL+xW1d1fZQoaAZoCWgPQwg6W0BoPWBvQJSGlFKUaBVL9mgWR0Cckr6ZH/cWdX2UKGgGaAloD0MID9b/OUzBb0CUhpRSlGgVTQwBaBZHQJyTDD50r9V1fZQoaAZoCWgPQwgP1ZRkHQVtQJSGlFKUaBVNEgFoFkdAnJR3wTdtVXV9lChoBmgJaA9DCB5Td2UXE3BAlIaUUpRoFU0CAWgWR0CclzRChN/OdX2UKGgGaAloD0MIOuenOA6baECUhpRSlGgVTZ0BaBZHQJyYZIMBp6B1fZQoaAZoCWgPQwhGRDF5AzQ5QJSGlFKUaBVL82gWR0CcmZkeIVM3dX2UKGgGaAloD0MIUTHO30SkcUCUhpRSlGgVTXEBaBZHQJyamxeLNwB1fZQoaAZoCWgPQwjy0k1ikHBwQJSGlFKUaBVNGAFoFkdAnJrpHNHH3nV9lChoBmgJaA9DCJ0q3zPSMHFAlIaUUpRoFU2eAWgWR0Ccm1G5c1O1dX2UKGgGaAloD0MIG/Z7Yp1LakCUhpRSlGgVTQABaBZHQJ0HXaRISUV1fZQoaAZoCWgPQwivP4nPnd5mQJSGlFKUaBVNYQFoFkdAnQfzxXnyNHV9lChoBmgJaA9DCFCMLJnjnGxAlIaUUpRoFU0OAWgWR0CdC426ClJpdX2UKGgGaAloD0MIWUxsPq6waUCUhpRSlGgVTWABaBZHQJ0L2gOBlMB1fZQoaAZoCWgPQwjx1vm3S31vQJSGlFKUaBVNQAFoFkdAnQvbcbiqAHV9lChoBmgJaA9DCLNeDOXEb25AlIaUUpRoFU2XA2gWR0CdD4JYT0xudX2UKGgGaAloD0MIy/eMROjbbUCUhpRSlGgVTS0BaBZHQJ0Pgzch1T11fZQoaAZoCWgPQwid1QJ7jKFwQJSGlFKUaBVNGQFoFkdAnRDwCnxaxHV9lChoBmgJaA9DCFLSw9BqDmxAlIaUUpRoFU0BAWgWR0CdEvZfD1oQdX2UKGgGaAloD0MIceXsnVG0cECUhpRSlGgVTRIBaBZHQJ0TDtXxOL11fZQoaAZoCWgPQwg97lutE/cjQJSGlFKUaBVN6ANoFkdAnRMlVxS5y3V9lChoBmgJaA9DCPexgt8G3W5AlIaUUpRoFU0wAWgWR0CdE5DeCTUzdX2UKGgGaAloD0MIYwtBDkrab0CUhpRSlGgVTQ0BaBZHQJ0WaXgLqlh1fZQoaAZoCWgPQwg0D2CR3+BwQJSGlFKUaBVNmQFoFkdAnRb2jfvWpnV9lChoBmgJaA9DCGg+527X6V5AlIaUUpRoFU3oA2gWR0CdGbst03fidX2UKGgGaAloD0MIByRh3w7vcECUhpRSlGgVTQkBaBZHQJ0Z88s+V1R1fZQoaAZoCWgPQwhEFf4M7/lvQJSGlFKUaBVNHQFoFkdAnRq5nUUfxXV9lChoBmgJaA9DCMJPHEC/nl1AlIaUUpRoFU3oA2gWR0CdHPURnOB2dX2UKGgGaAloD0MIumWH+Ac2cECUhpRSlGgVTQsBaBZHQJ0dS9WZJCl1fZQoaAZoCWgPQwhz9Pi9TTRwQJSGlFKUaBVL/2gWR0CdHYAdn004dX2UKGgGaAloD0MISwFp/4NsakCUhpRSlGgVTRgBaBZHQJ0eBE4Nqg11fZQoaAZoCWgPQwhKea2EbjdpQJSGlFKUaBVN+gJoFkdAnSN8i0OVgXV9lChoBmgJaA9DCNyEe2VelG9AlIaUUpRoFU0TAWgWR0CdJgJY1YQrdX2UKGgGaAloD0MIJclzfR9Wb0CUhpRSlGgVTR4BaBZHQJ0mR4+r2g51fZQoaAZoCWgPQwiSI52BEXxtQJSGlFKUaBVNewFoFkdAnSdqN6w+uHV9lChoBmgJaA9DCOq0boNarnBAlIaUUpRoFUv0aBZHQJ0oCAe7tiR1fZQoaAZoCWgPQwgs8uuHWBJhQJSGlFKUaBVN6ANoFkdAnSlK5byH23V9lChoBmgJaA9DCAUyO4veC21AlIaUUpRoFU1OAWgWR0CdLnVObiIddX2UKGgGaAloD0MIAoBjzx6oZ0CUhpRSlGgVTdYCaBZHQJ0zl5OafBh1fZQoaAZoCWgPQwgpeXWOASBjQJSGlFKUaBVNsAJoFkdAnTQ2w/xDs3V9lChoBmgJaA9DCJCiztxD8WJAlIaUUpRoFU3oA2gWR0CdNJ3os7MgdX2UKGgGaAloD0MIcv27PnPzZkCUhpRSlGgVTcABaBZHQJ01xPDYRNB1fZQoaAZoCWgPQwjv5NNjWwBuQJSGlFKUaBVNFgFoFkdAnTeJIxxku3V9lChoBmgJaA9DCCS2uwfo/29AlIaUUpRoFU0iAWgWR0CdOcmU4aP0dX2UKGgGaAloD0MI9+rjoe+xcECUhpRSlGgVTRYBaBZHQJ05yjzqbBp1fZQoaAZoCWgPQwgaidAINmFwQJSGlFKUaBVNLQFoFkdAnTvuwxFiKHV9lChoBmgJaA9DCImXp3NF3GJAlIaUUpRoFU2iAWgWR0CdPA2YfGModX2UKGgGaAloD0MIgZcZNsrEW0CUhpRSlGgVTegDaBZHQJ08YW2w3YN1fZQoaAZoCWgPQwjHndLBeklhQJSGlFKUaBVN6ANoFkdAnTxi704BFXV9lChoBmgJaA9DCINr7uj/fXBAlIaUUpRoFU05AWgWR0CdPt7E5yU+dX2UKGgGaAloD0MI3NlXHuTjcECUhpRSlGgVTRkBaBZHQJ1AUGPgeil1fZQoaAZoCWgPQwi6MT1hCepwQJSGlFKUaBVNCQFoFkdAnUDtpAUtZnV9lChoBmgJaA9DCDiDv19M229AlIaUUpRoFU1MAWgWR0CdQmv8ZUDMdX2UKGgGaAloD0MID+85sJwjbkCUhpRSlGgVS/FoFkdAnUJtayKNynV9lChoBmgJaA9DCKZkOQmlX3BAlIaUUpRoFU0iAWgWR0CdRFqdH2AYdX2UKGgGaAloD0MI3UPC9/5/WECUhpRSlGgVTegDaBZHQJ1FX8IiTt91fZQoaAZoCWgPQwjfGtgqwbVvQJSGlFKUaBVNCwFoFkdAnUWPseGO/HV9lChoBmgJaA9DCOv822U/13BAlIaUUpRoFU0aAWgWR0CdRad30PH1dX2UKGgGaAloD0MIL2tigS/mbkCUhpRSlGgVTRkBaBZHQJ1JQAXEZR91fZQoaAZoCWgPQwhq96sA3zZhQJSGlFKUaBVN6ANoFkdAnUl1RxcVxnV9lChoBmgJaA9DCCaMZmX7pGpAlIaUUpRoFU18AWgWR0CdSX7pV0cPdX2UKGgGaAloD0MIavZAK7BCcECUhpRSlGgVTXcBaBZHQJ1Jozi0fHR1fZQoaAZoCWgPQwjsoBLXMVJsQJSGlFKUaBVL/mgWR0CdSl4EwFkhdX2UKGgGaAloD0MI/g5FgT5+a0CUhpRSlGgVTRkBaBZHQJ1KpXFLnLd1fZQoaAZoCWgPQwie7jzxHAtxQJSGlFKUaBVL/2gWR0CdS7u2qkuZdX2UKGgGaAloD0MIXkpdMo7ZXUCUhpRSlGgVTegDaBZHQJ1L+cRUWEd1fZQoaAZoCWgPQwiGOxdGeoFsQJSGlFKUaBVNIAFoFkdAnUy+earmyXV9lChoBmgJaA9DCASSsG9nIHBAlIaUUpRoFUvyaBZHQJ1NudwvQF91fZQoaAZoCWgPQwjQRxlxwVpwQJSGlFKUaBVNhgJoFkdAnU8h4D9wWHV9lChoBmgJaA9DCDKR0mweMGxAlIaUUpRoFU0rAWgWR0CdT5p4rz5HdX2UKGgGaAloD0MI9dcrLHhTcECUhpRSlGgVS+9oFkdAnVDvH1e0HHV9lChoBmgJaA9DCBUfn5AdsG1AlIaUUpRoFUvwaBZHQJ1Q/vWpZOl1fZQoaAZoCWgPQwhqhel7jZBiQJSGlFKUaBVN6ANoFkdAnVFyP+4smXV9lChoBmgJaA9DCB3Lu+oBb21AlIaUUpRoFUv9aBZHQJ1SVl2/zrh1fZQoaAZoCWgPQwjhDWlU4CtwQJSGlFKUaBVNFgFoFkdAnVJjBl+VknV9lChoBmgJaA9DCPLTuDc/c29AlIaUUpRoFU0JAWgWR0CdVIOtnwocdX2UKGgGaAloD0MIYtnMIakqcECUhpRSlGgVTV8BaBZHQJ1Ula5f+jx1fZQoaAZoCWgPQwi0rPvHArRwQJSGlFKUaBVNJQFoFkdAnVU4DTz/ZXV9lChoBmgJaA9DCIl+bf10CnBAlIaUUpRoFU0hAWgWR0CdViU34sVddX2UKGgGaAloD0MIgnNGlPaxZUCUhpRSlGgVTRkCaBZHQJ1XXCpFTeh1fZQoaAZoCWgPQwgZkpOJ2/FtQJSGlFKUaBVNBwFoFkdAnVf6SowVTXV9lChoBmgJaA9DCHjVA+Yhe3BAlIaUUpRoFU0MAWgWR0CdWJ9OymhudX2UKGgGaAloD0MI4c6FkV7HWkCUhpRSlGgVTegDaBZHQJ1ZduZThpB1fZQoaAZoCWgPQwgp54u9l+tpQJSGlFKUaBVN3gFoFkdAnVpLm2b5M3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ea6dcdc92f93170b291c1c73cbfa9b4990dc1ad28ad7f63d457986b954cf095d
3
+ size 147412
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f30cd2185e0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f30cd218670>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f30cd218700>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f30cd218790>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f30cd218820>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f30cd2188b0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f30cd218940>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f30cd2189d0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f30cd218a60>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f30cd218af0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f30cd218b80>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f30cd218c10>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f30cd2198c0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 1015808,
47
+ "_total_timesteps": 1000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1678303183267269277,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAFYBxT4w7ea9moLrO55LuLqiMLy+2CxCOwAAAAAAAAAArTgjvs5Ktj0i46E+/NqFvvaomT3rQc+6AAAAAAAAAABNQk29ri+9uuTOKbwSlO085ql5Ox9CErYAAIA/AACAPxo1fT19m5c+6Z1FPHUCcb6QRbA8GFN1vAAAAAAAAAAAUwfWPk2kML0efjS91+6svOwyADt65Yg9AACAPwAAAADGUT2+uWEFPjYQRD7RW5q+RVYrPLyND70AAAAAAAAAACA8Mb72mjQ7+EX+sLx45rFpOPO8AZKPMgAAgD8AAIA/TZBRPh857zxto027YvDaubsZhj71ueu6AACAPwAAgD8Ko7w+iuVeP9t+lj6NgZa+XWojPiIZAD0AAAAAAAAAAHrUsz6lHgs/vT4EPgZmOb7Mwdc9cRLHPAAAAAAAAAAApkWtvXE7OLsAROK6DDyBPMKFnjwFrF+9AACAPwAAgD/NsWI+yFPLvC3P1z3XNjK8XbEyvvH1Cb0AAIA/AACAP9P0hz5U3TK9YMx4PccVC7yUzJ2+1QnKvAAAgD8AAIA/E6EiPigAfj8r03s+WzDSvmaT3D2QElq8AAAAAAAAAADaHES+iNvOvL9PhbuPcQe6BeQ1PuFasjoAAIA/AACAPw0V/j0w7Qo/jt6mPSqJZr5mOUI9BwYUPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.015808000000000044,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVcxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI3QcgtQm2YECUhpRSlIwBbJRN6AOMAXSUR0Ccgq/YraufdX2UKGgGaAloD0MI8OAnDiCSbkCUhpRSlGgVTXEBaBZHQJyDxiYsunN1fZQoaAZoCWgPQwhFgxQ8RZhwQJSGlFKUaBVNCgFoFkdAnIW69oN/fHV9lChoBmgJaA9DCHKL+bkhu21AlIaUUpRoFUvyaBZHQJyGyQXAM2F1fZQoaAZoCWgPQwgI5ujx+zBvQJSGlFKUaBVNDwFoFkdAnIjnJPqLTHV9lChoBmgJaA9DCK7TSEtlc3BAlIaUUpRoFU0EAWgWR0CciiyLhrFgdX2UKGgGaAloD0MI0T/BxYpPbUCUhpRSlGgVTQUBaBZHQJyKciKR+0B1fZQoaAZoCWgPQwinP/uRIp9wQJSGlFKUaBVL/WgWR0CcitYlIEr5dX2UKGgGaAloD0MIuwopP6nsW0CUhpRSlGgVTegDaBZHQJyLVYB/7SB1fZQoaAZoCWgPQwh56/zb5dFxQJSGlFKUaBVNBgJoFkdAnIvJqVQhwHV9lChoBmgJaA9DCLt7gO7L4FlAlIaUUpRoFU3oA2gWR0CcjK7rLQokdX2UKGgGaAloD0MIK702G+txcUCUhpRSlGgVS+xoFkdAnI2pYT0xunV9lChoBmgJaA9DCNaryOgAO2tAlIaUUpRoFU0RAWgWR0CcjobRWtEHdX2UKGgGaAloD0MIQ46tZwhtY0CUhpRSlGgVTegDaBZHQJyPnEDQqqh1fZQoaAZoCWgPQwgb1H5rJ89cQJSGlFKUaBVN6ANoFkdAnI/bAUL2H3V9lChoBmgJaA9DCLA5B88EwW1AlIaUUpRoFU1HAWgWR0CckUB7u2JBdX2UKGgGaAloD0MIiSgmb4DRJ0CUhpRSlGgVTR0BaBZHQJyRnL+xW1d1fZQoaAZoCWgPQwg6W0BoPWBvQJSGlFKUaBVL9mgWR0Cckr6ZH/cWdX2UKGgGaAloD0MID9b/OUzBb0CUhpRSlGgVTQwBaBZHQJyTDD50r9V1fZQoaAZoCWgPQwgP1ZRkHQVtQJSGlFKUaBVNEgFoFkdAnJR3wTdtVXV9lChoBmgJaA9DCB5Td2UXE3BAlIaUUpRoFU0CAWgWR0CclzRChN/OdX2UKGgGaAloD0MIOuenOA6baECUhpRSlGgVTZ0BaBZHQJyYZIMBp6B1fZQoaAZoCWgPQwhGRDF5AzQ5QJSGlFKUaBVL82gWR0CcmZkeIVM3dX2UKGgGaAloD0MIUTHO30SkcUCUhpRSlGgVTXEBaBZHQJyamxeLNwB1fZQoaAZoCWgPQwjy0k1ikHBwQJSGlFKUaBVNGAFoFkdAnJrpHNHH3nV9lChoBmgJaA9DCJ0q3zPSMHFAlIaUUpRoFU2eAWgWR0Ccm1G5c1O1dX2UKGgGaAloD0MIG/Z7Yp1LakCUhpRSlGgVTQABaBZHQJ0HXaRISUV1fZQoaAZoCWgPQwivP4nPnd5mQJSGlFKUaBVNYQFoFkdAnQfzxXnyNHV9lChoBmgJaA9DCFCMLJnjnGxAlIaUUpRoFU0OAWgWR0CdC426ClJpdX2UKGgGaAloD0MIWUxsPq6waUCUhpRSlGgVTWABaBZHQJ0L2gOBlMB1fZQoaAZoCWgPQwjx1vm3S31vQJSGlFKUaBVNQAFoFkdAnQvbcbiqAHV9lChoBmgJaA9DCLNeDOXEb25AlIaUUpRoFU2XA2gWR0CdD4JYT0xudX2UKGgGaAloD0MIy/eMROjbbUCUhpRSlGgVTS0BaBZHQJ0Pgzch1T11fZQoaAZoCWgPQwid1QJ7jKFwQJSGlFKUaBVNGQFoFkdAnRDwCnxaxHV9lChoBmgJaA9DCFLSw9BqDmxAlIaUUpRoFU0BAWgWR0CdEvZfD1oQdX2UKGgGaAloD0MIceXsnVG0cECUhpRSlGgVTRIBaBZHQJ0TDtXxOL11fZQoaAZoCWgPQwg97lutE/cjQJSGlFKUaBVN6ANoFkdAnRMlVxS5y3V9lChoBmgJaA9DCPexgt8G3W5AlIaUUpRoFU0wAWgWR0CdE5DeCTUzdX2UKGgGaAloD0MIYwtBDkrab0CUhpRSlGgVTQ0BaBZHQJ0WaXgLqlh1fZQoaAZoCWgPQwg0D2CR3+BwQJSGlFKUaBVNmQFoFkdAnRb2jfvWpnV9lChoBmgJaA9DCGg+527X6V5AlIaUUpRoFU3oA2gWR0CdGbst03fidX2UKGgGaAloD0MIByRh3w7vcECUhpRSlGgVTQkBaBZHQJ0Z88s+V1R1fZQoaAZoCWgPQwhEFf4M7/lvQJSGlFKUaBVNHQFoFkdAnRq5nUUfxXV9lChoBmgJaA9DCMJPHEC/nl1AlIaUUpRoFU3oA2gWR0CdHPURnOB2dX2UKGgGaAloD0MIumWH+Ac2cECUhpRSlGgVTQsBaBZHQJ0dS9WZJCl1fZQoaAZoCWgPQwhz9Pi9TTRwQJSGlFKUaBVL/2gWR0CdHYAdn004dX2UKGgGaAloD0MISwFp/4NsakCUhpRSlGgVTRgBaBZHQJ0eBE4Nqg11fZQoaAZoCWgPQwhKea2EbjdpQJSGlFKUaBVN+gJoFkdAnSN8i0OVgXV9lChoBmgJaA9DCNyEe2VelG9AlIaUUpRoFU0TAWgWR0CdJgJY1YQrdX2UKGgGaAloD0MIJclzfR9Wb0CUhpRSlGgVTR4BaBZHQJ0mR4+r2g51fZQoaAZoCWgPQwiSI52BEXxtQJSGlFKUaBVNewFoFkdAnSdqN6w+uHV9lChoBmgJaA9DCOq0boNarnBAlIaUUpRoFUv0aBZHQJ0oCAe7tiR1fZQoaAZoCWgPQwgs8uuHWBJhQJSGlFKUaBVN6ANoFkdAnSlK5byH23V9lChoBmgJaA9DCAUyO4veC21AlIaUUpRoFU1OAWgWR0CdLnVObiIddX2UKGgGaAloD0MIAoBjzx6oZ0CUhpRSlGgVTdYCaBZHQJ0zl5OafBh1fZQoaAZoCWgPQwgpeXWOASBjQJSGlFKUaBVNsAJoFkdAnTQ2w/xDs3V9lChoBmgJaA9DCJCiztxD8WJAlIaUUpRoFU3oA2gWR0CdNJ3os7MgdX2UKGgGaAloD0MIcv27PnPzZkCUhpRSlGgVTcABaBZHQJ01xPDYRNB1fZQoaAZoCWgPQwjv5NNjWwBuQJSGlFKUaBVNFgFoFkdAnTeJIxxku3V9lChoBmgJaA9DCCS2uwfo/29AlIaUUpRoFU0iAWgWR0CdOcmU4aP0dX2UKGgGaAloD0MI9+rjoe+xcECUhpRSlGgVTRYBaBZHQJ05yjzqbBp1fZQoaAZoCWgPQwgaidAINmFwQJSGlFKUaBVNLQFoFkdAnTvuwxFiKHV9lChoBmgJaA9DCImXp3NF3GJAlIaUUpRoFU2iAWgWR0CdPA2YfGModX2UKGgGaAloD0MIgZcZNsrEW0CUhpRSlGgVTegDaBZHQJ08YW2w3YN1fZQoaAZoCWgPQwjHndLBeklhQJSGlFKUaBVN6ANoFkdAnTxi704BFXV9lChoBmgJaA9DCINr7uj/fXBAlIaUUpRoFU05AWgWR0CdPt7E5yU+dX2UKGgGaAloD0MI3NlXHuTjcECUhpRSlGgVTRkBaBZHQJ1AUGPgeil1fZQoaAZoCWgPQwi6MT1hCepwQJSGlFKUaBVNCQFoFkdAnUDtpAUtZnV9lChoBmgJaA9DCDiDv19M229AlIaUUpRoFU1MAWgWR0CdQmv8ZUDMdX2UKGgGaAloD0MID+85sJwjbkCUhpRSlGgVS/FoFkdAnUJtayKNynV9lChoBmgJaA9DCKZkOQmlX3BAlIaUUpRoFU0iAWgWR0CdRFqdH2AYdX2UKGgGaAloD0MI3UPC9/5/WECUhpRSlGgVTegDaBZHQJ1FX8IiTt91fZQoaAZoCWgPQwjfGtgqwbVvQJSGlFKUaBVNCwFoFkdAnUWPseGO/HV9lChoBmgJaA9DCOv822U/13BAlIaUUpRoFU0aAWgWR0CdRad30PH1dX2UKGgGaAloD0MIL2tigS/mbkCUhpRSlGgVTRkBaBZHQJ1JQAXEZR91fZQoaAZoCWgPQwhq96sA3zZhQJSGlFKUaBVN6ANoFkdAnUl1RxcVxnV9lChoBmgJaA9DCCaMZmX7pGpAlIaUUpRoFU18AWgWR0CdSX7pV0cPdX2UKGgGaAloD0MIavZAK7BCcECUhpRSlGgVTXcBaBZHQJ1Jozi0fHR1fZQoaAZoCWgPQwjsoBLXMVJsQJSGlFKUaBVL/mgWR0CdSl4EwFkhdX2UKGgGaAloD0MI/g5FgT5+a0CUhpRSlGgVTRkBaBZHQJ1KpXFLnLd1fZQoaAZoCWgPQwie7jzxHAtxQJSGlFKUaBVL/2gWR0CdS7u2qkuZdX2UKGgGaAloD0MIXkpdMo7ZXUCUhpRSlGgVTegDaBZHQJ1L+cRUWEd1fZQoaAZoCWgPQwiGOxdGeoFsQJSGlFKUaBVNIAFoFkdAnUy+earmyXV9lChoBmgJaA9DCASSsG9nIHBAlIaUUpRoFUvyaBZHQJ1NudwvQF91fZQoaAZoCWgPQwjQRxlxwVpwQJSGlFKUaBVNhgJoFkdAnU8h4D9wWHV9lChoBmgJaA9DCDKR0mweMGxAlIaUUpRoFU0rAWgWR0CdT5p4rz5HdX2UKGgGaAloD0MI9dcrLHhTcECUhpRSlGgVS+9oFkdAnVDvH1e0HHV9lChoBmgJaA9DCBUfn5AdsG1AlIaUUpRoFUvwaBZHQJ1Q/vWpZOl1fZQoaAZoCWgPQwhqhel7jZBiQJSGlFKUaBVN6ANoFkdAnVFyP+4smXV9lChoBmgJaA9DCB3Lu+oBb21AlIaUUpRoFUv9aBZHQJ1SVl2/zrh1fZQoaAZoCWgPQwjhDWlU4CtwQJSGlFKUaBVNFgFoFkdAnVJjBl+VknV9lChoBmgJaA9DCPLTuDc/c29AlIaUUpRoFU0JAWgWR0CdVIOtnwocdX2UKGgGaAloD0MIYtnMIakqcECUhpRSlGgVTV8BaBZHQJ1Ula5f+jx1fZQoaAZoCWgPQwi0rPvHArRwQJSGlFKUaBVNJQFoFkdAnVU4DTz/ZXV9lChoBmgJaA9DCIl+bf10CnBAlIaUUpRoFU0hAWgWR0CdViU34sVddX2UKGgGaAloD0MIgnNGlPaxZUCUhpRSlGgVTRkCaBZHQJ1XXCpFTeh1fZQoaAZoCWgPQwgZkpOJ2/FtQJSGlFKUaBVNBwFoFkdAnVf6SowVTXV9lChoBmgJaA9DCHjVA+Yhe3BAlIaUUpRoFU0MAWgWR0CdWJ9OymhudX2UKGgGaAloD0MI4c6FkV7HWkCUhpRSlGgVTegDaBZHQJ1ZduZThpB1fZQoaAZoCWgPQwgp54u9l+tpQJSGlFKUaBVN3gFoFkdAnVpLm2b5M3VlLg=="
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 310,
80
+ "n_steps": 2048,
81
+ "gamma": 0.99,
82
+ "gae_lambda": 0.95,
83
+ "ent_coef": 0.0,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 10,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:56bd31a06f80484d17021b02c7e7bb29bdc5b51de81b57a071926e595c1979f1
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ac1a9af7d3c8737a5f5a15e6e0261b6b9f80556efd487ef0c032837ab9212588
3
+ size 43393
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
replay.mp4 ADDED
Binary file (196 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 239.87307728651822, "std_reward": 22.190135992967907, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-08T19:50:37.436956"}