radna commited on
Commit
dcb1a0c
1 Parent(s): 9da9e2e

Update configuration_intern_vit.py

Browse files
Files changed (1) hide show
  1. configuration_intern_vit.py +119 -117
configuration_intern_vit.py CHANGED
@@ -1,117 +1,119 @@
1
- # --------------------------------------------------------
2
- # InternVL
3
- # Copyright (c) 2023 OpenGVLab
4
- # Licensed under The MIT License [see LICENSE for details]
5
- # --------------------------------------------------------
6
- import os
7
- from typing import Union
8
-
9
- from transformers.configuration_utils import PretrainedConfig
10
- from transformers.utils import logging
11
-
12
- logger = logging.get_logger(__name__)
13
-
14
-
15
- class InternVisionConfig(PretrainedConfig):
16
- r"""
17
- This is the configuration class to store the configuration of a [`InternVisionModel`]. It is used to
18
- instantiate a vision encoder according to the specified arguments, defining the model architecture.
19
-
20
- Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
21
- documentation from [`PretrainedConfig`] for more information.
22
-
23
- Args:
24
- num_channels (`int`, *optional*, defaults to 3):
25
- Number of color channels in the input images (e.g., 3 for RGB).
26
- patch_size (`int`, *optional*, defaults to 14):
27
- The size (resolution) of each patch.
28
- image_size (`int`, *optional*, defaults to 224):
29
- The size (resolution) of each image.
30
- qkv_bias (`bool`, *optional*, defaults to `False`):
31
- Whether to add a bias to the queries and values in the self-attention layers.
32
- hidden_size (`int`, *optional*, defaults to 3200):
33
- Dimensionality of the encoder layers and the pooler layer.
34
- num_attention_heads (`int`, *optional*, defaults to 25):
35
- Number of attention heads for each attention layer in the Transformer encoder.
36
- intermediate_size (`int`, *optional*, defaults to 12800):
37
- Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
38
- qk_normalization (`bool`, *optional*, defaults to `True`):
39
- Whether to normalize the queries and keys in the self-attention layers.
40
- num_hidden_layers (`int`, *optional*, defaults to 48):
41
- Number of hidden layers in the Transformer encoder.
42
- use_flash_attn (`bool`, *optional*, defaults to `True`):
43
- Whether to use flash attention mechanism.
44
- hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
45
- The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
46
- `"relu"`, `"selu"` and `"gelu_new"` ``"gelu"` are supported.
47
- layer_norm_eps (`float`, *optional*, defaults to 1e-6):
48
- The epsilon used by the layer normalization layers.
49
- dropout (`float`, *optional*, defaults to 0.0):
50
- The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
51
- drop_path_rate (`float`, *optional*, defaults to 0.0):
52
- Dropout rate for stochastic depth.
53
- attention_dropout (`float`, *optional*, defaults to 0.0):
54
- The dropout ratio for the attention probabilities.
55
- initializer_range (`float`, *optional*, defaults to 0.02):
56
- The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
57
- initializer_factor (`float`, *optional*, defaults to 0.1):
58
- A factor for layer scale.
59
- """
60
-
61
- model_type = 'intern_vit_6b'
62
-
63
- def __init__(
64
- self,
65
- num_channels=3,
66
- patch_size=14,
67
- image_size=224,
68
- qkv_bias=False,
69
- hidden_size=3200,
70
- num_attention_heads=25,
71
- intermediate_size=12800,
72
- qk_normalization=True,
73
- num_hidden_layers=48,
74
- use_flash_attn=True,
75
- hidden_act='gelu',
76
- layer_norm_eps=1e-6,
77
- dropout=0.0,
78
- drop_path_rate=0.0,
79
- attention_dropout=0.0,
80
- initializer_range=0.02,
81
- initializer_factor=0.1,
82
- **kwargs,
83
- ):
84
- super().__init__(**kwargs)
85
-
86
- self.hidden_size = hidden_size
87
- self.intermediate_size = intermediate_size
88
- self.dropout = dropout
89
- self.drop_path_rate = drop_path_rate
90
- self.num_hidden_layers = num_hidden_layers
91
- self.num_attention_heads = num_attention_heads
92
- self.num_channels = num_channels
93
- self.patch_size = patch_size
94
- self.image_size = image_size
95
- self.initializer_range = initializer_range
96
- self.initializer_factor = initializer_factor
97
- self.attention_dropout = attention_dropout
98
- self.layer_norm_eps = layer_norm_eps
99
- self.hidden_act = hidden_act
100
- self.qkv_bias = qkv_bias
101
- self.qk_normalization = qk_normalization
102
- self.use_flash_attn = use_flash_attn
103
-
104
- @classmethod
105
- def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> 'PretrainedConfig':
106
- config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
107
-
108
- if 'vision_config' in config_dict:
109
- config_dict = config_dict['vision_config']
110
-
111
- if 'model_type' in config_dict and hasattr(cls, 'model_type') and config_dict['model_type'] != cls.model_type:
112
- logger.warning(
113
- f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
114
- f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.'
115
- )
116
-
117
- return cls.from_dict(config_dict, **kwargs)
 
 
 
1
+ # --------------------------------------------------------
2
+ # InternVL
3
+ # Copyright (c) 2023 OpenGVLab
4
+ # Licensed under The MIT License [see LICENSE for details]
5
+ # --------------------------------------------------------
6
+ import os
7
+ from typing import Union
8
+
9
+ from transformers.configuration_utils import PretrainedConfig
10
+ from transformers.utils import logging
11
+
12
+ logger = logging.get_logger(__name__)
13
+
14
+
15
+ class InternVisionConfig(PretrainedConfig):
16
+ r"""
17
+ This is the configuration class to store the configuration of a [`InternVisionModel`]. It is used to
18
+ instantiate a vision encoder according to the specified arguments, defining the model architecture.
19
+
20
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
21
+ documentation from [`PretrainedConfig`] for more information.
22
+
23
+ Args:
24
+ num_channels (`int`, *optional*, defaults to 3):
25
+ Number of color channels in the input images (e.g., 3 for RGB).
26
+ patch_size (`int`, *optional*, defaults to 14):
27
+ The size (resolution) of each patch.
28
+ image_size (`int`, *optional*, defaults to 224):
29
+ The size (resolution) of each image.
30
+ qkv_bias (`bool`, *optional*, defaults to `False`):
31
+ Whether to add a bias to the queries and values in the self-attention layers.
32
+ hidden_size (`int`, *optional*, defaults to 3200):
33
+ Dimensionality of the encoder layers and the pooler layer.
34
+ num_attention_heads (`int`, *optional*, defaults to 25):
35
+ Number of attention heads for each attention layer in the Transformer encoder.
36
+ intermediate_size (`int`, *optional*, defaults to 12800):
37
+ Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
38
+ qk_normalization (`bool`, *optional*, defaults to `True`):
39
+ Whether to normalize the queries and keys in the self-attention layers.
40
+ num_hidden_layers (`int`, *optional*, defaults to 48):
41
+ Number of hidden layers in the Transformer encoder.
42
+ use_flash_attn (`bool`, *optional*, defaults to `True`):
43
+ Whether to use flash attention mechanism.
44
+ hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
45
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
46
+ `"relu"`, `"selu"` and `"gelu_new"` ``"gelu"` are supported.
47
+ layer_norm_eps (`float`, *optional*, defaults to 1e-6):
48
+ The epsilon used by the layer normalization layers.
49
+ dropout (`float`, *optional*, defaults to 0.0):
50
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
51
+ drop_path_rate (`float`, *optional*, defaults to 0.0):
52
+ Dropout rate for stochastic depth.
53
+ attention_dropout (`float`, *optional*, defaults to 0.0):
54
+ The dropout ratio for the attention probabilities.
55
+ initializer_range (`float`, *optional*, defaults to 0.02):
56
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
57
+ initializer_factor (`float`, *optional*, defaults to 0.1):
58
+ A factor for layer scale.
59
+ """
60
+
61
+ model_type = 'intern_vit_6b'
62
+
63
+ def __init__(
64
+ self,
65
+ num_channels=3,
66
+ patch_size=14,
67
+ image_size=224,
68
+ qkv_bias=False,
69
+ hidden_size=3200,
70
+ num_attention_heads=25,
71
+ intermediate_size=12800,
72
+ qk_normalization=True,
73
+ num_hidden_layers=48,
74
+ use_flash_attn=True,
75
+ hidden_act='gelu',
76
+ norm_type='rms_norm',
77
+ layer_norm_eps=1e-6,
78
+ dropout=0.0,
79
+ drop_path_rate=0.0,
80
+ attention_dropout=0.0,
81
+ initializer_range=0.02,
82
+ initializer_factor=0.1,
83
+ **kwargs,
84
+ ):
85
+ super().__init__(**kwargs)
86
+
87
+ self.hidden_size = hidden_size
88
+ self.intermediate_size = intermediate_size
89
+ self.dropout = dropout
90
+ self.drop_path_rate = drop_path_rate
91
+ self.num_hidden_layers = num_hidden_layers
92
+ self.num_attention_heads = num_attention_heads
93
+ self.num_channels = num_channels
94
+ self.patch_size = patch_size
95
+ self.image_size = image_size
96
+ self.initializer_range = initializer_range
97
+ self.initializer_factor = initializer_factor
98
+ self.attention_dropout = attention_dropout
99
+ self.layer_norm_eps = layer_norm_eps
100
+ self.hidden_act = hidden_act
101
+ self.norm_type = norm_type
102
+ self.qkv_bias = qkv_bias
103
+ self.qk_normalization = qk_normalization
104
+ self.use_flash_attn = use_flash_attn
105
+
106
+ @classmethod
107
+ def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> 'PretrainedConfig':
108
+ config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
109
+
110
+ if 'vision_config' in config_dict:
111
+ config_dict = config_dict['vision_config']
112
+
113
+ if 'model_type' in config_dict and hasattr(cls, 'model_type') and config_dict['model_type'] != cls.model_type:
114
+ logger.warning(
115
+ f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
116
+ f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.'
117
+ )
118
+
119
+ return cls.from_dict(config_dict, **kwargs)