radius27's picture
committed PPO
d773b1a
{
"policy_class": {
":type:": "<class 'abc.ABCMeta'>",
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
"__module__": "stable_baselines3.common.policies",
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f1261db10d0>",
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f1261db1160>",
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f1261db11f0>",
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f1261db1280>",
"_build": "<function ActorCriticPolicy._build at 0x7f1261db1310>",
"forward": "<function ActorCriticPolicy.forward at 0x7f1261db13a0>",
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f1261db1430>",
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f1261db14c0>",
"_predict": "<function ActorCriticPolicy._predict at 0x7f1261db1550>",
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f1261db15e0>",
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f1261db1670>",
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f1261db1700>",
"__abstractmethods__": "frozenset()",
"_abc_impl": "<_abc._abc_data object at 0x7f1261db0a40>"
},
"verbose": 1,
"policy_kwargs": {},
"num_timesteps": 114688,
"_total_timesteps": 100000.0,
"_num_timesteps_at_start": 0,
"seed": null,
"action_noise": null,
"start_time": 1682212997300347562,
"learning_rate": 0.0003,
"tensorboard_log": null,
"lr_schedule": {
":type:": "<class 'function'>",
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
},
"_last_obs": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAPVjvr50wFM/FmAPPuS6N7/vVxi/ChzDvQAAAAAAAAAAmmQ/Pe9WOT/YkCO9PZE7vxMImj153zM+AAAAAAAAAACCLQ8/+XExP+MZNT/q+2C/vNddvVdoLz4AAAAAAAAAAJr8ar5/8nc/WphRv6slWr9wsPY9ZGGCPAAAAAAAAAAA8zCAvbaBkj+o6qq+nLQhvxWb0T05Eyc+AAAAAAAAAAADUsY+1XErPyJUKj+Qc0S/ccdjvU43Mj4AAAAAAAAAAKaSeb54h5E/UEIhv5HxJb9Lbc69ECnPvAAAAAAAAAAAMzX0vGWusT/6hGW+CVdAvl0kNz2uw6A7AAAAAAAAAACzVS89NNOOPuqhzr1tKlO/Sb41PsXgWz0AAAAAAAAAAJqfKr08vLk/pjvtvsCFuj1pRU49xw26PQAAAAAAAAAAI8vzvkVaXT8GxFI9HKpDv/WjBr/mqkw9AAAAAAAAAABmvry9sm8rP0aNOL4g3Tq/LrbQvXG3DL0AAAAAAAAAAFY7Yb5/op0/WUcmvyFiAr9ZEDS9too7vgAAAAAAAAAAg8bePrcADD/e3sQ+RYBHv7gihT5T5V0+AAAAAAAAAACtyQM+G3hlP5gcrj5RXFa/axneu2D3Lz4AAAAAAAAAAN2buD4ag80/7EtLPx3NT76OwSM8kDaTPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
},
"_last_episode_starts": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
},
"_last_original_obs": null,
"_episode_num": 0,
"use_sde": false,
"sde_sample_freq": -1,
"_current_progress_remaining": -0.1468799999999999,
"_stats_window_size": 100,
"ep_info_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVHhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI2pHqO7+ST8CUhpRSlIwBbJRLUIwBdJRHQFkt+JP69Ch1fZQoaAZoCWgPQwjk9ssnK2ZCwJSGlFKUaBVLf2gWR0BZLeLiuMdcdX2UKGgGaAloD0MIpN5TOe06UcCUhpRSlGgVS2NoFkdAWS6Vlf7aZnV9lChoBmgJaA9DCMh9q3Xi9kjAlIaUUpRoFUtraBZHQFkxDe0ojOd1fZQoaAZoCWgPQwid9L7xtS83QJSGlFKUaBVLh2gWR0BZNgA2hqTKdX2UKGgGaAloD0MI7zzxnC30NsCUhpRSlGgVS3poFkdAWT+RKYiPhnV9lChoBmgJaA9DCGuDE9Gv0FnAlIaUUpRoFUuGaBZHQFlFjFAE+xJ1fZQoaAZoCWgPQwh6NNWT+fVCwJSGlFKUaBVLUGgWR0BZSqSkj5bhdX2UKGgGaAloD0MIk+S5vg+NT8CUhpRSlGgVS01oFkdAWUx94NZvDXV9lChoBmgJaA9DCKJgxhSsrFPAlIaUUpRoFUtZaBZHQFlPSkj5bhZ1fZQoaAZoCWgPQwgjEK/rF4xLwJSGlFKUaBVLR2gWR0BZUs/pt78fdX2UKGgGaAloD0MIoWXdPxZWWcCUhpRSlGgVS39oFkdAWVN7hNucc3V9lChoBmgJaA9DCEUSvYxiESXAlIaUUpRoFUtlaBZHQFlYX1J17pp1fZQoaAZoCWgPQwioNc07zkhhwJSGlFKUaBVLbWgWR0BZXU1uR9w4dX2UKGgGaAloD0MILbEyGvl5UcCUhpRSlGgVS2loFkdAWWTSSeRPoHV9lChoBmgJaA9DCHtJY7SOtELAlIaUUpRoFUttaBZHQFlm/NZ/0/Z1fZQoaAZoCWgPQwho6J/gYoJZwJSGlFKUaBVLZmgWR0BZaBHskY4ydX2UKGgGaAloD0MI3PRnP1LwTcCUhpRSlGgVS2NoFkdAWW2xptaY/nV9lChoBmgJaA9DCJlmutdJsVXAlIaUUpRoFUtRaBZHQFltqd6LOzJ1fZQoaAZoCWgPQwh9kjtsIstEwJSGlFKUaBVLfWgWR0BZbk5hjOLSdX2UKGgGaAloD0MIQ1a3ek6CKsCUhpRSlGgVS4xoFkdAWXI34sVclnV9lChoBmgJaA9DCIwTX+0oD1nAlIaUUpRoFUtaaBZHQFl3blijL0V1fZQoaAZoCWgPQwiqtwa2SqhGwJSGlFKUaBVLRmgWR0BZea59Vmz0dX2UKGgGaAloD0MIi8BY38BiVsCUhpRSlGgVS2VoFkdAWYMezUqhDnV9lChoBmgJaA9DCGB4JclzdFDAlIaUUpRoFUtXaBZHQFmJgSeyzHF1fZQoaAZoCWgPQwioV8oyxME7wJSGlFKUaBVLbWgWR0BZik5dWyTqdX2UKGgGaAloD0MIKEUr9wJfSMCUhpRSlGgVS3BoFkdAWY7TpgTh53V9lChoBmgJaA9DCMAGRIgrL03AlIaUUpRoFUtRaBZHQFmdvl2eQMh1fZQoaAZoCWgPQwgVGohlM4tQwJSGlFKUaBVLYGgWR0BZoBVIZqEfdX2UKGgGaAloD0MI/ilVouxhPcCUhpRSlGgVS4toFkdAWaLXVbzK93V9lChoBmgJaA9DCM6pZAAoeWrAlIaUUpRoFUtqaBZHQFmiy6tknTl1fZQoaAZoCWgPQwjNc0S+S31RwJSGlFKUaBVLZ2gWR0BZo1+RYA80dX2UKGgGaAloD0MIU82spYCiTcCUhpRSlGgVS4BoFkdAWaeqhlDneXV9lChoBmgJaA9DCJW2uMZny1PAlIaUUpRoFUtqaBZHQFmsg2ZRbbF1fZQoaAZoCWgPQwjxuRPsv85CwJSGlFKUaBVLWGgWR0BZrwVfu1F6dX2UKGgGaAloD0MIP1jGhm7qVMCUhpRSlGgVS3RoFkdAWbJTXJ5miHV9lChoBmgJaA9DCF2kUBY+LmjAlIaUUpRoFUtvaBZHQFm0YU34sVd1fZQoaAZoCWgPQwhv9Zz0vgFSwJSGlFKUaBVLaGgWR0BZthSHdoFndX2UKGgGaAloD0MIufscHy17U8CUhpRSlGgVS1loFkdAWb72qT8pC3V9lChoBmgJaA9DCBK8IY0K31bAlIaUUpRoFUtTaBZHQFnBabF0gbJ1fZQoaAZoCWgPQwgxs89jlNFIQJSGlFKUaBVN6ANoFkdAWcgYJmdy1nV9lChoBmgJaA9DCB9LH7qg8EbAlIaUUpRoFUt6aBZHQFnLhpxm03R1fZQoaAZoCWgPQwhDxqNUwrdJwJSGlFKUaBVLdmgWR0BZzo2sJY1YdX2UKGgGaAloD0MICahwBKloTsCUhpRSlGgVS1doFkdAWc9hScbzb3V9lChoBmgJaA9DCEM4ZtmTTknAlIaUUpRoFUtdaBZHQFnTUX531SR1fZQoaAZoCWgPQwjVWS2wx6VlwJSGlFKUaBVLZGgWR0BZ2M+V1Oj7dX2UKGgGaAloD0MIN92yQ/ytRcCUhpRSlGgVS2FoFkdAWdraM72crnV9lChoBmgJaA9DCDwzwXCuv0BAlIaUUpRoFUtKaBZHQFnbcPe54GF1fZQoaAZoCWgPQwgtW+uLhCpGwJSGlFKUaBVLYGgWR0BZ4APVd5Y6dX2UKGgGaAloD0MIjINLx5xRXMCUhpRSlGgVS3RoFkdAWeAQsf7rLXV9lChoBmgJaA9DCBDs+C9QkXDAlIaUUpRoFUt6aBZHQFnijZ+QU6B1fZQoaAZoCWgPQwjTLxFvnQM8wJSGlFKUaBVLY2gWR0BZ5U9yLhrFdX2UKGgGaAloD0MIf9sTJLZZSMCUhpRSlGgVS1VoFkdAWehIjGDL83V9lChoBmgJaA9DCPCFyVTBNFDAlIaUUpRoFUtfaBZHQFnrPf8/D+B1fZQoaAZoCWgPQwh0mZoEb2g1wJSGlFKUaBVLgWgWR0BZ7JcX3xnWdX2UKGgGaAloD0MIJ1DEIobpRMCUhpRSlGgVS01oFkdAWe1eD3/PxHV9lChoBmgJaA9DCA2reCPzvEXAlIaUUpRoFUtWaBZHQFntzyjHn2Z1fZQoaAZoCWgPQwjkE7LzNqxGwJSGlFKUaBVLSGgWR0BZ8w9aEBbOdX2UKGgGaAloD0MImSmtvyUuTsCUhpRSlGgVS1RoFkdAWfQKneizs3V9lChoBmgJaA9DCGPRdHYyrDbAlIaUUpRoFUuOaBZHQFn2ELpiZv11fZQoaAZoCWgPQwhB1lOrr/hBwJSGlFKUaBVLQWgWR0BaAPvSc9W7dX2UKGgGaAloD0MIjGfQ0D+RVsCUhpRSlGgVS0toFkdAWgMnkT6BRXV9lChoBmgJaA9DCNBDbRtGNUPAlIaUUpRoFUtfaBZHQFoFHN5dGAl1fZQoaAZoCWgPQwggs7PonZhIwJSGlFKUaBVLZ2gWR0BaBmOAAhjfdX2UKGgGaAloD0MIUDkmi/sHUsCUhpRSlGgVS4VoFkdAWgmArhBJI3V9lChoBmgJaA9DCJw0DYrmoSvAlIaUUpRoFUttaBZHQFoLai9Iwud1fZQoaAZoCWgPQwi2n4zxYYYnwJSGlFKUaBVLaWgWR0BaDrvoePq+dX2UKGgGaAloD0MI7IhDNpDETsCUhpRSlGgVS0loFkdAWg6BTXJ5mnV9lChoBmgJaA9DCNJtiVxwCFDAlIaUUpRoFUtUaBZHQFoSO6NEPUd1fZQoaAZoCWgPQwgYlj/flgthwJSGlFKUaBVLdWgWR0BaFEEHMUypdX2UKGgGaAloD0MIayi1F9F1UMCUhpRSlGgVS1toFkdAWhZlVcUuc3V9lChoBmgJaA9DCPM4DOavakbAlIaUUpRoFUtsaBZHQFob4dIXj2l1fZQoaAZoCWgPQwh+NQcI5jg/wJSGlFKUaBVLQWgWR0BaH7EP1+RYdX2UKGgGaAloD0MIqb2ItmMqKUCUhpRSlGgVS3xoFkdAWiAmKIi1RnV9lChoBmgJaA9DCAcI5ujxP0nAlIaUUpRoFUthaBZHQFogj1PFefJ1fZQoaAZoCWgPQwjY8sr1tgRWwJSGlFKUaBVLc2gWR0BaJ2KuSwGGdX2UKGgGaAloD0MI4UBIFjB9XsCUhpRSlGgVS3poFkdAWi30J4SpSHV9lChoBmgJaA9DCDihEAGHfkjAlIaUUpRoFUtSaBZHQFovGIsRQJp1fZQoaAZoCWgPQwjJdVPKa1pVwJSGlFKUaBVLaWgWR0BaNvBrN4Z/dX2UKGgGaAloD0MIdJfEWRFnTsCUhpRSlGgVS2NoFkdAWjjyvs7dSHV9lChoBmgJaA9DCIjzcALT4lrAlIaUUpRoFUteaBZHQFo5wM6RyOt1fZQoaAZoCWgPQwg3qP3WzrhgwJSGlFKUaBVLd2gWR0BaOm7voePrdX2UKGgGaAloD0MIavZAKzBMQsCUhpRSlGgVS1BoFkdAWkCOp84Pw3V9lChoBmgJaA9DCPay7bQ1bl3AlIaUUpRoFUuFaBZHQFpCwzLwF1V1fZQoaAZoCWgPQwg6BmSvd1c/wJSGlFKUaBVLamgWR0BaQz63y7PIdX2UKGgGaAloD0MIOXzSiQSJRsCUhpRSlGgVS0toFkdAWkNNCZ4Oc3V9lChoBmgJaA9DCAHD8ufbjFzAlIaUUpRoFUt5aBZHQFpGvTPSlWR1fZQoaAZoCWgPQwgbmx2pvkFDwJSGlFKUaBVLcWgWR0BaSIYvWYnfdX2UKGgGaAloD0MIob36eOj/X8CUhpRSlGgVS11oFkdAWkqRZEDyOXV9lChoBmgJaA9DCClauReY90vAlIaUUpRoFUt0aBZHQFpLiGFi8Wd1fZQoaAZoCWgPQwiFIt3PKbpJwJSGlFKUaBVLbWgWR0BaUao2n88+dX2UKGgGaAloD0MI1F+vsOBCS8CUhpRSlGgVS05oFkdAWlpGe+VTrHV9lChoBmgJaA9DCGYUyy2twk/AlIaUUpRoFUtJaBZHQFpawcYIjW11fZQoaAZoCWgPQwigh9o2jAxJwJSGlFKUaBVLUWgWR0BaXca86FM7dX2UKGgGaAloD0MI9YJPc/IWW8CUhpRSlGgVS3poFkdAWl9rftQbdnV9lChoBmgJaA9DCAfSxaaVm1HAlIaUUpRoFUtuaBZHQFpgaYu01Il1fZQoaAZoCWgPQwiwPbMkQKpQwJSGlFKUaBVLcGgWR0BaYlX3g1m8dX2UKGgGaAloD0MIFymUha8bN8CUhpRSlGgVS0xoFkdAWmTkIX0oSnV9lChoBmgJaA9DCH6NJEG4DE/AlIaUUpRoFUtpaBZHQFppepXIU8F1fZQoaAZoCWgPQwiW0F0SZ2NDwJSGlFKUaBVLWWgWR0BaasebNKRMdWUu"
},
"ep_success_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
},
"_n_updates": 28,
"observation_space": {
":type:": "<class 'gym.spaces.box.Box'>",
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
"dtype": "float32",
"_shape": [
8
],
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
"high": "[inf inf inf inf inf inf inf inf]",
"bounded_below": "[False False False False False False False False]",
"bounded_above": "[False False False False False False False False]",
"_np_random": null
},
"action_space": {
":type:": "<class 'gym.spaces.discrete.Discrete'>",
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
"n": 4,
"_shape": [],
"dtype": "int64",
"_np_random": null
},
"n_envs": 16,
"n_steps": 1024,
"gamma": 0.999,
"gae_lambda": 0.98,
"ent_coef": 0.01,
"vf_coef": 0.5,
"max_grad_norm": 0.5,
"batch_size": 64,
"n_epochs": 4,
"clip_range": {
":type:": "<class 'function'>",
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
},
"clip_range_vf": null,
"normalize_advantage": true,
"target_kl": null
}