radev commited on
Commit
adc4cd3
1 Parent(s): de03883

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +7 -7
README.md CHANGED
@@ -20,10 +20,10 @@ model-index:
20
  metrics:
21
  - name: Accuracy
22
  type: accuracy
23
- value: 0.9045
24
  - name: F1
25
  type: f1
26
- value: 0.9016498473978424
27
  ---
28
 
29
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -33,9 +33,9 @@ should probably proofread and complete it, then remove this comment. -->
33
 
34
  This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset.
35
  It achieves the following results on the evaluation set:
36
- - Loss: 0.3373
37
- - Accuracy: 0.9045
38
- - F1: 0.9016
39
 
40
  ## Model description
41
 
@@ -66,8 +66,8 @@ The following hyperparameters were used during training:
66
 
67
  | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
68
  |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
69
- | No log | 1.0 | 125 | 0.5313 | 0.847 | 0.8333 |
70
- | 0.7326 | 2.0 | 250 | 0.3373 | 0.9045 | 0.9016 |
71
 
72
 
73
  ### Framework versions
 
20
  metrics:
21
  - name: Accuracy
22
  type: accuracy
23
+ value: 0.8945
24
  - name: F1
25
  type: f1
26
+ value: 0.8871610121255439
27
  ---
28
 
29
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
33
 
34
  This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset.
35
  It achieves the following results on the evaluation set:
36
+ - Loss: 0.3645
37
+ - Accuracy: 0.8945
38
+ - F1: 0.8872
39
 
40
  ## Model description
41
 
 
66
 
67
  | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
68
  |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
69
+ | No log | 1.0 | 125 | 0.5816 | 0.8015 | 0.7597 |
70
+ | 0.7707 | 2.0 | 250 | 0.3645 | 0.8945 | 0.8872 |
71
 
72
 
73
  ### Framework versions