Update pipeline.py
Browse files- pipeline.py +24 -16
pipeline.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
from typing import
|
2 |
from PIL import Image
|
3 |
import requests
|
4 |
import torch
|
@@ -11,29 +11,30 @@ from torchvision.transforms.functional import InterpolationMode
|
|
11 |
|
12 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
13 |
|
|
|
14 |
class PreTrainedPipeline():
|
15 |
def __init__(self, path=""):
|
16 |
# load the optimized model
|
17 |
-
self.model_path = os.path.join(path,'model_large_retrieval_coco.pth')
|
18 |
self.model = blip_feature_extractor(
|
19 |
-
pretrained=self.model_path,
|
20 |
-
image_size=384,
|
21 |
vit='large',
|
22 |
med_config=os.path.join(path, 'configs/med_config.json')
|
23 |
)
|
24 |
self.model.eval()
|
25 |
self.model = self.model.to(device)
|
26 |
-
|
27 |
image_size = 384
|
28 |
self.transform = transforms.Compose([
|
29 |
-
transforms.Resize((image_size,image_size),
|
|
|
30 |
transforms.ToTensor(),
|
31 |
-
transforms.Normalize(
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
|
36 |
-
def __call__(self, inputs: str) -> List[float]:
|
37 |
"""
|
38 |
Args:
|
39 |
data (:obj:):
|
@@ -43,11 +44,18 @@ class PreTrainedPipeline():
|
|
43 |
- "feature_vector": A list of floats corresponding to the image embedding.
|
44 |
"""
|
45 |
parameters = {"mode": "image"}
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
with torch.no_grad():
|
51 |
-
feature_vector = self.model(image, text, mode=parameters["mode"])[
|
|
|
52 |
# postprocess the prediction
|
53 |
return feature_vector
|
|
|
1 |
+
from typing import Dict, List, Any, Union
|
2 |
from PIL import Image
|
3 |
import requests
|
4 |
import torch
|
|
|
11 |
|
12 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
13 |
|
14 |
+
|
15 |
class PreTrainedPipeline():
|
16 |
def __init__(self, path=""):
|
17 |
# load the optimized model
|
18 |
+
self.model_path = os.path.join(path, 'model_large_retrieval_coco.pth')
|
19 |
self.model = blip_feature_extractor(
|
20 |
+
pretrained=self.model_path,
|
21 |
+
image_size=384,
|
22 |
vit='large',
|
23 |
med_config=os.path.join(path, 'configs/med_config.json')
|
24 |
)
|
25 |
self.model.eval()
|
26 |
self.model = self.model.to(device)
|
27 |
+
|
28 |
image_size = 384
|
29 |
self.transform = transforms.Compose([
|
30 |
+
transforms.Resize((image_size, image_size),
|
31 |
+
interpolation=InterpolationMode.BICUBIC),
|
32 |
transforms.ToTensor(),
|
33 |
+
transforms.Normalize(
|
34 |
+
(0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))
|
35 |
+
])
|
|
|
36 |
|
37 |
+
def __call__(self, inputs: Union[str, "Image.Image"]) -> List[float]:
|
38 |
"""
|
39 |
Args:
|
40 |
data (:obj:):
|
|
|
44 |
- "feature_vector": A list of floats corresponding to the image embedding.
|
45 |
"""
|
46 |
parameters = {"mode": "image"}
|
47 |
+
if isinstance(inputs, str):
|
48 |
+
# decode base64 image to PIL
|
49 |
+
image = Image.open(
|
50 |
+
BytesIO(base64.b64decode(inputs))).convert("RGB")
|
51 |
+
elif isinstance(inputs, Image.Image):
|
52 |
+
image = inputs.convert("RGB")
|
53 |
+
|
54 |
+
image = self.transform(image).unsqueeze(0).to(device)
|
55 |
+
|
56 |
+
text = ""
|
57 |
with torch.no_grad():
|
58 |
+
feature_vector = self.model(image, text, mode=parameters["mode"])[
|
59 |
+
0, 0].tolist()
|
60 |
# postprocess the prediction
|
61 |
return feature_vector
|