qwp4w3hyb commited on
Commit
86b038b
1 Parent(s): 70f1551

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +131 -0
README.md ADDED
@@ -0,0 +1,131 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: Replete-AI/Replete-Coder-Qwen2-1.5b
4
+ tags:
5
+ - text-generation-inference
6
+ - transformers
7
+ - unsloth
8
+ - qwen2
9
+ datasets:
10
+ - Replete-AI/code_bagel_hermes-2.5
11
+ - Replete-AI/code_bagel
12
+ - Replete-AI/OpenHermes-2.5-Uncensored
13
+ - teknium/OpenHermes-2.5
14
+ - layoric/tiny-codes-alpaca
15
+ - glaiveai/glaive-code-assistant-v3
16
+ - ajibawa-2023/Code-290k-ShareGPT
17
+ - TIGER-Lab/MathInstruct
18
+ - chargoddard/commitpack-ft-instruct-rated
19
+ - iamturun/code_instructions_120k_alpaca
20
+ - ise-uiuc/Magicoder-Evol-Instruct-110K
21
+ - cognitivecomputations/dolphin-coder
22
+ - nickrosh/Evol-Instruct-Code-80k-v1
23
+ - coseal/CodeUltraFeedback_binarized
24
+ - glaiveai/glaive-function-calling-v2
25
+ - CyberNative/Code_Vulnerability_Security_DPO
26
+ - jondurbin/airoboros-2.2
27
+ - camel-ai
28
+ - lmsys/lmsys-chat-1m
29
+ - CollectiveCognition/chats-data-2023-09-22
30
+ - CoT-Alpaca-GPT4
31
+ - WizardLM/WizardLM_evol_instruct_70k
32
+ - WizardLM/WizardLM_evol_instruct_V2_196k
33
+ - teknium/GPT4-LLM-Cleaned
34
+ - GPTeacher
35
+ - OpenGPT
36
+ - meta-math/MetaMathQA
37
+ - Open-Orca/SlimOrca
38
+ - garage-bAInd/Open-Platypus
39
+ - anon8231489123/ShareGPT_Vicuna_unfiltered
40
+ - Unnatural-Instructions-GPT4
41
+ ---
42
+
43
+ # Quant Infos
44
+
45
+ - quants done with an importance matrix for improved quantization loss
46
+ - ggufs & imatrix generated from bf16 for "optimal" accuracy loss
47
+ - Wide coverage of different gguf quant types from Q\_8\_0 down to IQ1\_S
48
+ - Quantized with [llama.cpp](https://github.com/ggerganov/llama.cpp) commit [4bfe50f741479c1df1c377260c3ff5702586719e](https://github.com/ggerganov/llama.cpp/commit/4bfe50f741479c1df1c377260c3ff5702586719e) (master as of 2024-06-11)
49
+ - Imatrix generated with [this](https://gist.github.com/bartowski1182/eb213dccb3571f863da82e99418f81e8) multi-purpose dataset by [bartowski](https://huggingface.co/bartowski).
50
+ ```
51
+ ./imatrix -c 512 -m $model_name-bf16.gguf -f calibration_datav3.txt -o $model_name.imatrix
52
+ ```
53
+
54
+ # Original Model Card:
55
+
56
+ # Replete-Coder-Qwen2-1.5b
57
+ Finetuned by: Rombodawg
58
+ ### More than just a coding model!
59
+ Although Replete-Coder has amazing coding capabilities, its trained on vaste amount of non-coding data, fully cleaned and uncensored. Dont just use it for coding, use it for all your needs! We are truly trying to make the GPT killer!
60
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/642cc1c253e76b4c2286c58e/-0dERC793D9XeFsJ9uHbx.png)
61
+
62
+ Thank you to TensorDock for sponsoring Replete-Coder-llama3-8b and Replete-Coder-Qwen2-1.5b
63
+ you can check out their website for cloud compute rental bellow.
64
+ - https://tensordock.com
65
+ __________________________________________________________________________________________________
66
+ Replete-Coder-Qwen2-1.5b is a general purpose model that is specially trained in coding in over 100 coding languages. The data used to train the model contains 25% non-code instruction data and 75% coding instruction data totaling up to 3.9 million lines, roughly 1 billion tokens, or 7.27gb of instruct data. The data used to train this model was 100% uncensored, then fully deduplicated, before training happened.
67
+
68
+ The Replete-Coder models (including Replete-Coder-llama3-8b and Replete-Coder-Qwen2-1.5b) feature the following:
69
+
70
+ - Advanced coding capabilities in over 100 coding languages
71
+ - Advanced code translation (between languages)
72
+ - Security and vulnerability prevention related coding capabilities
73
+ - General purpose use
74
+ - Uncensored use
75
+ - Function calling
76
+ - Advanced math use
77
+ - Use on low end (8b) and mobile (1.5b) platforms
78
+
79
+ Notice: Replete-Coder series of models are fine-tuned on a context window of 8192 tokens. Performance past this context window is not guaranteed.
80
+
81
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/642cc1c253e76b4c2286c58e/ADHZysQCKxiSordZRwuj_.png)
82
+ __________________________________________________________________________________________________
83
+
84
+ You can find the 25% non-coding instruction below:
85
+
86
+ - https://huggingface.co/datasets/Replete-AI/OpenHermes-2.5-Uncensored
87
+
88
+ And the 75% coding specific instruction data below:
89
+
90
+ - https://huggingface.co/datasets/Replete-AI/code_bagel
91
+
92
+ These two datasets were combined to create the final dataset for training, which is linked below:
93
+
94
+ - https://huggingface.co/datasets/Replete-AI/code_bagel_hermes-2.5
95
+ __________________________________________________________________________________________________
96
+ ## Prompt Template: ChatML
97
+ ```
98
+ <|im_start|>system
99
+ {}<|im_end|>
100
+
101
+ <|im_start|>user
102
+ {}<|im_end|>
103
+
104
+ <|im_start|>assistant
105
+ {}
106
+ ```
107
+ Note: The system prompt varies in training data, but the most commonly used one is:
108
+ ```
109
+ Below is an instruction that describes a task, Write a response that appropriately completes the request.
110
+ ```
111
+ End token:
112
+ ```
113
+ <|endoftext|>
114
+ ```
115
+ __________________________________________________________________________________________________
116
+ Thank you to the community for your contributions to the Replete-AI/code_bagel_hermes-2.5 dataset. Without the participation of so many members making their datasets free and open source for any to use, this amazing AI model wouldn't be possible.
117
+
118
+ Extra special thanks to Teknium for the Open-Hermes-2.5 dataset and jondurbin for the bagel dataset and the naming idea for the code_bagel series of datasets. You can find both of their huggingface accounts linked below:
119
+
120
+ - https://huggingface.co/teknium
121
+ - https://huggingface.co/jondurbin
122
+
123
+ Another special thanks to unsloth for being the main method of training for Replete-Coder. Bellow you can find their github, as well as the special Replete-Ai secret sause (Unsloth + Qlora + Galore) colab code document that was used to train this model.
124
+
125
+ - https://github.com/unslothai/unsloth
126
+ - https://colab.research.google.com/drive/1eXGqy5M--0yW4u0uRnmNgBka-tDk2Li0?usp=sharing
127
+ __________________________________________________________________________________________________
128
+
129
+ ## Join the Replete-Ai discord! We are a great and Loving community!
130
+
131
+ - https://discord.gg/ZZbnsmVnjD