radinplaid commited on
Commit
600563d
·
verified ·
1 Parent(s): 1b599df

Upload folder using huggingface_hub

Browse files
.ipynb_checkpoints/README-checkpoint.md ADDED
@@ -0,0 +1,108 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ - cs
5
+ tags:
6
+ - translation
7
+ license: cc-by-4.0
8
+ datasets:
9
+ - quickmt/quickmt-train.cs-en
10
+ model-index:
11
+ - name: quickmt-en-cs
12
+ results:
13
+ - task:
14
+ name: Translation eng-ces
15
+ type: translation
16
+ args: eng-ces
17
+ dataset:
18
+ name: flores101-devtest
19
+ type: flores_101
20
+ args: eng_Latn ces_Latn devtest
21
+ metrics:
22
+ - name: BLEU
23
+ type: bleu
24
+ value: 33.73
25
+ - name: CHRF
26
+ type: chrf
27
+ value: 60.29
28
+ - name: COMET
29
+ type: comet
30
+ value: 88.77
31
+ ---
32
+
33
+
34
+ # `quickmt-en-cs` Neural Machine Translation Model
35
+
36
+ `quickmt-en-cs` is a reasonably fast and reasonably accurate neural machine translation model for translation from `en` into `cs`.
37
+
38
+
39
+ ## Try it on our Huggingface Space
40
+
41
+ Give it a try before downloading here: https://huggingface.co/spaces/quickmt/QuickMT-Demo
42
+
43
+
44
+ ## Model Information
45
+
46
+ * Trained using [`eole`](https://github.com/eole-nlp/eole)
47
+ * 200M parameter transformer 'big' with 8 encoder layers and 2 decoder layers
48
+ * 32k separate Sentencepiece vocabs
49
+ * Expested for fast inference to [CTranslate2](https://github.com/OpenNMT/CTranslate2) format
50
+ * Training data: https://huggingface.co/datasets/quickmt/quickmt-train.lv-en/tree/main
51
+
52
+ See the `eole` model configuration in this repository for further details and the `eole-model` for the raw `eole` (pytorch) model.
53
+
54
+
55
+ ## Usage with `quickmt`
56
+
57
+ You must install the Nvidia cuda toolkit first, if you want to do GPU inference.
58
+
59
+ Next, install the `quickmt` python library and download the model:
60
+
61
+ ```bash
62
+ git clone https://github.com/quickmt/quickmt.git
63
+ pip install ./quickmt/
64
+
65
+ quickmt-model-download quickmt/quickmt-en-cs ./quickmt-en-cs
66
+ ```
67
+
68
+ Finally use the model in python:
69
+
70
+ ```python
71
+ from quickmt import Translator
72
+
73
+ # Auto-detects GPU, set to "cpu" to force CPU inference
74
+ t = Translator("./quickmt-en-cs/", device="auto")
75
+
76
+ # Translate - set beam size to 1 for faster speed (but lower quality)
77
+ sample_text = 'Dr. Ehud Ur, professor of medicine at Dalhousie University in Halifax, Nova Scotia and chair of the clinical and scientific division of the Canadian Diabetes Association cautioned that the research is still in its early days.'
78
+
79
+ t(sample_text, beam_size=5)
80
+ ```
81
+
82
+ > 'Dr. Ehud Ur, profesor medicíny na Dalhousie University v Halifaxu v Novém Skotsku a předseda klinické a vědecké divize Canadian Diabetes Association varoval, že výzkum je stále v počátcích.'
83
+
84
+ ```python
85
+ # Get alternative translations by sampling
86
+ # You can pass any cTranslate2 `translate_batch` arguments
87
+ t([sample_text], sampling_temperature=1.2, beam_size=1, sampling_topk=50, sampling_topp=0.9)
88
+ ```
89
+
90
+ > 'Profesor medicíny z Dalhousie University v Halifaxu v Novém Skotsku doktor Ehud Ur a předseda klinického a vědeckého oddělení Kanadské Diabetesové asociace upozornil, že jejich výzkum je stále ve svých počátcích.'
91
+
92
+ The model is in `ctranslate2` format, and the tokenizers are `sentencepiece`, so you can use `ctranslate2` directly instead of through `quickmt`. It is also possible to get this model to work with e.g. [LibreTranslate](https://libretranslate.com/) which also uses `ctranslate2` and `sentencepiece`. A model in safetensors format to be used with `eole` is also provided.
93
+
94
+
95
+ ## Metrics
96
+
97
+ `bleu` and `chrf2` are calculated with [sacrebleu](https://github.com/mjpost/sacrebleu) on the [Flores200 `devtest` test set](https://huggingface.co/datasets/facebook/flores) ("eng_Latn"->"ces_Latn"). `comet22` with the [`comet`](https://github.com/Unbabel/COMET) library and the [default model](https://huggingface.co/Unbabel/wmt22-comet-da). "Time (s)" is the time in seconds to translate the flores-devtest dataset (1012 sentences) on an Nvidia RTX 4070s GPU with batch size 32.
98
+
99
+
100
+ | | bleu | chrf2 | comet22 | Time (s) |
101
+ |:---------------------------------|-------:|--------:|----------:|-----------:|
102
+ | quickmt/quickmt-en-cs | 33.73 | 60.29 | 88.77 | 1.35 |
103
+ | Helsinki-NLP/opus-mt-en-cs | 29.64 | 57.06 | 86.29 | 4.05 |
104
+ | facebook/nllb-200-distilled-600M | 28.39 | 56.53 | 88.74 | 25.7 |
105
+ | facebook/nllb-200-distilled-1.3B | 32.25 | 59.24 | 90.97 | 44.96 |
106
+ | facebook/m2m100_418M | 25.31 | 53.58 | 83.78 | 21.06 |
107
+ | facebook/m2m100_1.2B | 30.94 | 58.28 | 88.67 | 41.31 |
108
+
README.md CHANGED
@@ -1,3 +1,108 @@
1
- ---
2
- license: cc-by-4.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ - cs
5
+ tags:
6
+ - translation
7
+ license: cc-by-4.0
8
+ datasets:
9
+ - quickmt/quickmt-train.cs-en
10
+ model-index:
11
+ - name: quickmt-en-cs
12
+ results:
13
+ - task:
14
+ name: Translation eng-ces
15
+ type: translation
16
+ args: eng-ces
17
+ dataset:
18
+ name: flores101-devtest
19
+ type: flores_101
20
+ args: eng_Latn ces_Latn devtest
21
+ metrics:
22
+ - name: BLEU
23
+ type: bleu
24
+ value: 33.73
25
+ - name: CHRF
26
+ type: chrf
27
+ value: 60.29
28
+ - name: COMET
29
+ type: comet
30
+ value: 88.77
31
+ ---
32
+
33
+
34
+ # `quickmt-en-cs` Neural Machine Translation Model
35
+
36
+ `quickmt-en-cs` is a reasonably fast and reasonably accurate neural machine translation model for translation from `en` into `cs`.
37
+
38
+
39
+ ## Try it on our Huggingface Space
40
+
41
+ Give it a try before downloading here: https://huggingface.co/spaces/quickmt/QuickMT-Demo
42
+
43
+
44
+ ## Model Information
45
+
46
+ * Trained using [`eole`](https://github.com/eole-nlp/eole)
47
+ * 200M parameter transformer 'big' with 8 encoder layers and 2 decoder layers
48
+ * 32k separate Sentencepiece vocabs
49
+ * Expested for fast inference to [CTranslate2](https://github.com/OpenNMT/CTranslate2) format
50
+ * Training data: https://huggingface.co/datasets/quickmt/quickmt-train.lv-en/tree/main
51
+
52
+ See the `eole` model configuration in this repository for further details and the `eole-model` for the raw `eole` (pytorch) model.
53
+
54
+
55
+ ## Usage with `quickmt`
56
+
57
+ You must install the Nvidia cuda toolkit first, if you want to do GPU inference.
58
+
59
+ Next, install the `quickmt` python library and download the model:
60
+
61
+ ```bash
62
+ git clone https://github.com/quickmt/quickmt.git
63
+ pip install ./quickmt/
64
+
65
+ quickmt-model-download quickmt/quickmt-en-cs ./quickmt-en-cs
66
+ ```
67
+
68
+ Finally use the model in python:
69
+
70
+ ```python
71
+ from quickmt import Translator
72
+
73
+ # Auto-detects GPU, set to "cpu" to force CPU inference
74
+ t = Translator("./quickmt-en-cs/", device="auto")
75
+
76
+ # Translate - set beam size to 1 for faster speed (but lower quality)
77
+ sample_text = 'Dr. Ehud Ur, professor of medicine at Dalhousie University in Halifax, Nova Scotia and chair of the clinical and scientific division of the Canadian Diabetes Association cautioned that the research is still in its early days.'
78
+
79
+ t(sample_text, beam_size=5)
80
+ ```
81
+
82
+ > 'Dr. Ehud Ur, profesor medicíny na Dalhousie University v Halifaxu v Novém Skotsku a předseda klinické a vědecké divize Canadian Diabetes Association varoval, že výzkum je stále v počátcích.'
83
+
84
+ ```python
85
+ # Get alternative translations by sampling
86
+ # You can pass any cTranslate2 `translate_batch` arguments
87
+ t([sample_text], sampling_temperature=1.2, beam_size=1, sampling_topk=50, sampling_topp=0.9)
88
+ ```
89
+
90
+ > 'Profesor medicíny z Dalhousie University v Halifaxu v Novém Skotsku doktor Ehud Ur a předseda klinického a vědeckého oddělení Kanadské Diabetesové asociace upozornil, že jejich výzkum je stále ve svých počátcích.'
91
+
92
+ The model is in `ctranslate2` format, and the tokenizers are `sentencepiece`, so you can use `ctranslate2` directly instead of through `quickmt`. It is also possible to get this model to work with e.g. [LibreTranslate](https://libretranslate.com/) which also uses `ctranslate2` and `sentencepiece`. A model in safetensors format to be used with `eole` is also provided.
93
+
94
+
95
+ ## Metrics
96
+
97
+ `bleu` and `chrf2` are calculated with [sacrebleu](https://github.com/mjpost/sacrebleu) on the [Flores200 `devtest` test set](https://huggingface.co/datasets/facebook/flores) ("eng_Latn"->"ces_Latn"). `comet22` with the [`comet`](https://github.com/Unbabel/COMET) library and the [default model](https://huggingface.co/Unbabel/wmt22-comet-da). "Time (s)" is the time in seconds to translate the flores-devtest dataset (1012 sentences) on an Nvidia RTX 4070s GPU with batch size 32.
98
+
99
+
100
+ | | bleu | chrf2 | comet22 | Time (s) |
101
+ |:---------------------------------|-------:|--------:|----------:|-----------:|
102
+ | quickmt/quickmt-en-cs | 33.73 | 60.29 | 88.77 | 1.35 |
103
+ | Helsinki-NLP/opus-mt-en-cs | 29.64 | 57.06 | 86.29 | 4.05 |
104
+ | facebook/nllb-200-distilled-600M | 28.39 | 56.53 | 88.74 | 25.7 |
105
+ | facebook/nllb-200-distilled-1.3B | 32.25 | 59.24 | 90.97 | 44.96 |
106
+ | facebook/m2m100_418M | 25.31 | 53.58 | 83.78 | 21.06 |
107
+ | facebook/m2m100_1.2B | 30.94 | 58.28 | 88.67 | 41.31 |
108
+
config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_source_bos": false,
3
+ "add_source_eos": false,
4
+ "bos_token": "<s>",
5
+ "decoder_start_token": "<s>",
6
+ "eos_token": "</s>",
7
+ "layer_norm_epsilon": 1e-06,
8
+ "multi_query_attention": false,
9
+ "unk_token": "<unk>"
10
+ }
eole-config.yaml ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ## IO
2
+ save_data: data
3
+ overwrite: True
4
+ seed: 1234
5
+ report_every: 100
6
+ valid_metrics: ["BLEU"]
7
+ tensorboard: true
8
+ tensorboard_log_dir: tensorboard
9
+
10
+ ### Vocab
11
+ src_vocab: en.eole.vocab
12
+ tgt_vocab: cs.eole.vocab
13
+ src_vocab_size: 32000
14
+ tgt_vocab_size: 32000
15
+ vocab_size_multiple: 8
16
+ share_vocab: false
17
+ n_sample: 0
18
+
19
+ data:
20
+ corpus_1:
21
+ # path_src: hf://quickmt/quickmt-train.cs-en/en
22
+ # path_tgt: hf://quickmt/quickmt-train.cs-en/cs
23
+ # path_sco: hf://quickmt/quickmt-train.cs-en/sco
24
+ path_src: train.en
25
+ path_tgt: train.cs
26
+ valid:
27
+ path_src: valid.en
28
+ path_tgt: valid.cs
29
+
30
+ transforms: [sentencepiece, filtertoolong]
31
+ transforms_configs:
32
+ sentencepiece:
33
+ src_subword_model: "en.spm.model"
34
+ tgt_subword_model: "cs.spm.model"
35
+ filtertoolong:
36
+ src_seq_length: 256
37
+ tgt_seq_length: 256
38
+
39
+ training:
40
+ # Run configuration
41
+ model_path: quickmt-en-cs-eole-model
42
+ #train_from: model
43
+ keep_checkpoint: 4
44
+ train_steps: 100000
45
+ save_checkpoint_steps: 5000
46
+ valid_steps: 5000
47
+
48
+ # Train on a single GPU
49
+ world_size: 1
50
+ gpu_ranks: [0]
51
+
52
+ # Batching 10240
53
+ batch_type: "tokens"
54
+ batch_size: 6000
55
+ valid_batch_size: 2048
56
+ batch_size_multiple: 8
57
+ accum_count: [15]
58
+ accum_steps: [0]
59
+
60
+ # Optimizer & Compute
61
+ compute_dtype: "fp16"
62
+ optim: "adamw"
63
+ #use_amp: False
64
+ learning_rate: 2.0
65
+ warmup_steps: 2000
66
+ decay_method: "noam"
67
+ adam_beta2: 0.998
68
+
69
+ # Data loading
70
+ bucket_size: 128000
71
+ num_workers: 4
72
+ prefetch_factor: 32
73
+
74
+ # Hyperparams
75
+ dropout_steps: [0]
76
+ dropout: [0.1]
77
+ attention_dropout: [0.1]
78
+ max_grad_norm: 0
79
+ label_smoothing: 0.1
80
+ average_decay: 0.0001
81
+ param_init_method: xavier_uniform
82
+ normalization: "tokens"
83
+
84
+ model:
85
+ architecture: "transformer"
86
+ share_embeddings: false
87
+ share_decoder_embeddings: true
88
+ hidden_size: 1024
89
+ encoder:
90
+ layers: 8
91
+ decoder:
92
+ layers: 2
93
+ heads: 8
94
+ transformer_ff: 4096
95
+ embeddings:
96
+ word_vec_size: 1024
97
+ position_encoding_type: "SinusoidalInterleaved"
98
+
eole-model/config.json ADDED
@@ -0,0 +1,132 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "tensorboard_log_dir_dated": "tensorboard/Oct-07_17-10-35",
3
+ "n_sample": 0,
4
+ "share_vocab": false,
5
+ "tensorboard": true,
6
+ "src_vocab_size": 32000,
7
+ "seed": 1234,
8
+ "vocab_size_multiple": 8,
9
+ "src_vocab": "en.eole.vocab",
10
+ "transforms": [
11
+ "sentencepiece",
12
+ "filtertoolong"
13
+ ],
14
+ "tensorboard_log_dir": "tensorboard",
15
+ "tgt_vocab_size": 32000,
16
+ "tgt_vocab": "cs.eole.vocab",
17
+ "overwrite": true,
18
+ "report_every": 100,
19
+ "save_data": "data",
20
+ "valid_metrics": [
21
+ "BLEU"
22
+ ],
23
+ "training": {
24
+ "gpu_ranks": [
25
+ 0
26
+ ],
27
+ "valid_batch_size": 2048,
28
+ "dropout_steps": [
29
+ 0
30
+ ],
31
+ "adam_beta2": 0.998,
32
+ "warmup_steps": 2000,
33
+ "prefetch_factor": 32,
34
+ "model_path": "quickmt-en-cs-eole-model",
35
+ "bucket_size": 128000,
36
+ "label_smoothing": 0.1,
37
+ "max_grad_norm": 0.0,
38
+ "accum_steps": [
39
+ 0
40
+ ],
41
+ "optim": "adamw",
42
+ "attention_dropout": [
43
+ 0.1
44
+ ],
45
+ "batch_type": "tokens",
46
+ "average_decay": 0.0001,
47
+ "valid_steps": 5000,
48
+ "compute_dtype": "torch.float16",
49
+ "world_size": 1,
50
+ "num_workers": 0,
51
+ "decay_method": "noam",
52
+ "accum_count": [
53
+ 15
54
+ ],
55
+ "keep_checkpoint": 4,
56
+ "param_init_method": "xavier_uniform",
57
+ "batch_size_multiple": 8,
58
+ "train_steps": 100000,
59
+ "normalization": "tokens",
60
+ "save_checkpoint_steps": 5000,
61
+ "dropout": [
62
+ 0.1
63
+ ],
64
+ "batch_size": 6000,
65
+ "learning_rate": 2.0
66
+ },
67
+ "data": {
68
+ "corpus_1": {
69
+ "path_tgt": "train.cs",
70
+ "transforms": [
71
+ "sentencepiece",
72
+ "filtertoolong"
73
+ ],
74
+ "path_src": "train.en",
75
+ "path_align": null
76
+ },
77
+ "valid": {
78
+ "path_tgt": "valid.cs",
79
+ "transforms": [
80
+ "sentencepiece",
81
+ "filtertoolong"
82
+ ],
83
+ "path_src": "valid.en",
84
+ "path_align": null
85
+ }
86
+ },
87
+ "model": {
88
+ "transformer_ff": 4096,
89
+ "hidden_size": 1024,
90
+ "heads": 8,
91
+ "architecture": "transformer",
92
+ "share_decoder_embeddings": true,
93
+ "share_embeddings": false,
94
+ "position_encoding_type": "SinusoidalInterleaved",
95
+ "embeddings": {
96
+ "tgt_word_vec_size": 1024,
97
+ "word_vec_size": 1024,
98
+ "src_word_vec_size": 1024,
99
+ "position_encoding_type": "SinusoidalInterleaved"
100
+ },
101
+ "decoder": {
102
+ "transformer_ff": 4096,
103
+ "hidden_size": 1024,
104
+ "n_positions": null,
105
+ "heads": 8,
106
+ "tgt_word_vec_size": 1024,
107
+ "decoder_type": "transformer",
108
+ "layers": 2,
109
+ "position_encoding_type": "SinusoidalInterleaved"
110
+ },
111
+ "encoder": {
112
+ "transformer_ff": 4096,
113
+ "encoder_type": "transformer",
114
+ "hidden_size": 1024,
115
+ "n_positions": null,
116
+ "src_word_vec_size": 1024,
117
+ "heads": 8,
118
+ "layers": 8,
119
+ "position_encoding_type": "SinusoidalInterleaved"
120
+ }
121
+ },
122
+ "transforms_configs": {
123
+ "filtertoolong": {
124
+ "tgt_seq_length": 256,
125
+ "src_seq_length": 256
126
+ },
127
+ "sentencepiece": {
128
+ "tgt_subword_model": "${MODEL_PATH}/cs.spm.model",
129
+ "src_subword_model": "${MODEL_PATH}/en.spm.model"
130
+ }
131
+ }
132
+ }
eole-model/cs.spm.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:85c6d43b1b3c3f658776e489e998671c2ad653f99fef942e9c9b3e69fa2da69b
3
+ size 828185
eole-model/en.spm.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ffcee02997db92cbb52f1dfbc1e8a2b16e0b9d1f1b069da41ebf2401e22328fa
3
+ size 800183
eole-model/model.00.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4eeed1419b4b4bc1a07492d105f23a9e23ee9dd71843a8ede2f09768bf7bb33d
3
+ size 840314816
eole-model/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:08aae7d62fe34352244b8a248555c333aa27c6221b39521a4a1da8ca81a3572e
3
+ size 409915789
source_vocabulary.json ADDED
The diff for this file is too large to render. See raw diff
 
src.spm.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ffcee02997db92cbb52f1dfbc1e8a2b16e0b9d1f1b069da41ebf2401e22328fa
3
+ size 800183
target_vocabulary.json ADDED
The diff for this file is too large to render. See raw diff
 
tgt.spm.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:85c6d43b1b3c3f658776e489e998671c2ad653f99fef942e9c9b3e69fa2da69b
3
+ size 828185