Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,130 @@
|
|
1 |
---
|
2 |
pipeline_tag: image-segmentation
|
3 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
pipeline_tag: image-segmentation
|
3 |
+
---
|
4 |
+
|
5 |
+
<!---
|
6 |
+
Copyright 2024 The HuggingFace Team. All rights reserved.
|
7 |
+
|
8 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
9 |
+
you may not use this file except in compliance with the License.
|
10 |
+
You may obtain a copy of the License at
|
11 |
+
|
12 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
13 |
+
|
14 |
+
Unless required by applicable law or agreed to in writing, software
|
15 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
16 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
17 |
+
See the License for the specific language governing permissions and
|
18 |
+
limitations under the License.
|
19 |
+
-->
|
20 |
+
|
21 |
+
# Instance Segmentation Example
|
22 |
+
|
23 |
+
Content:
|
24 |
+
- [PyTorch Version with Accelerate](#pytorch-version-with-accelerate)
|
25 |
+
- [Reload and Perform Inference](#reload-and-perform-inference)
|
26 |
+
|
27 |
+
## PyTorch Version with Accelerate
|
28 |
+
|
29 |
+
This model is based on the script [`run_instance_segmentation_no_trainer.py`](https://github.com/huggingface/transformers/blob/main/examples/pytorch/instance-segmentation/run_instance_segmentation_no_trainer.py).
|
30 |
+
The script uses [🤗 Accelerate](https://github.com/huggingface/accelerate) to write your own training loop in PyTorch and run it on various environments, including CPU, multi-CPU, GPU, multi-GPU, and TPU, with support for mixed precision.
|
31 |
+
|
32 |
+
First, configure the environment:
|
33 |
+
|
34 |
+
```bash
|
35 |
+
accelerate config
|
36 |
+
```
|
37 |
+
|
38 |
+
Answer the questions regarding your training environment. Then, run:
|
39 |
+
|
40 |
+
```bash
|
41 |
+
accelerate test
|
42 |
+
```
|
43 |
+
|
44 |
+
This command ensures everything is ready for training. Finally, launch training with:
|
45 |
+
|
46 |
+
```bash
|
47 |
+
accelerate launch run_instance_segmentation_no_trainer.py \
|
48 |
+
--model_name_or_path facebook/mask2former-swin-tiny-coco-instance \
|
49 |
+
--output_dir finetune-instance-segmentation-ade20k-mini-mask2former-no-trainer \
|
50 |
+
--dataset_name qubvel-hf/ade20k-mini \
|
51 |
+
--do_reduce_labels \
|
52 |
+
--image_height 256 \
|
53 |
+
--image_width 256 \
|
54 |
+
--num_train_epochs 40 \
|
55 |
+
--learning_rate 1e-5 \
|
56 |
+
--lr_scheduler_type constant \
|
57 |
+
--per_device_train_batch_size 8 \
|
58 |
+
--gradient_accumulation_steps 2 \
|
59 |
+
--dataloader_num_workers 8 \
|
60 |
+
--push_to_hub
|
61 |
+
```
|
62 |
+
|
63 |
+
|
64 |
+
## Reload and Perform Inference
|
65 |
+
|
66 |
+
You can easily load this trained model and perform inference as follows:
|
67 |
+
|
68 |
+
```python
|
69 |
+
import torch
|
70 |
+
import requests
|
71 |
+
import matplotlib.pyplot as plt
|
72 |
+
|
73 |
+
from PIL import Image
|
74 |
+
from transformers import Mask2FormerForUniversalSegmentation, Mask2FormerImageProcessor
|
75 |
+
|
76 |
+
# Load image
|
77 |
+
image = Image.open(requests.get("http://farm4.staticflickr.com/3017/3071497290_31f0393363_z.jpg", stream=True).raw)
|
78 |
+
|
79 |
+
# Load model and image processor
|
80 |
+
device = "cuda"
|
81 |
+
checkpoint = "qubvel-hf/finetune-instance-segmentation-ade20k-mini-mask2former-no-trainer"
|
82 |
+
|
83 |
+
model = Mask2FormerForUniversalSegmentation.from_pretrained(checkpoint, device_map=device)
|
84 |
+
image_processor = Mask2FormerImageProcessor.from_pretrained(checkpoint)
|
85 |
+
|
86 |
+
# Run inference on image
|
87 |
+
inputs = image_processor(images=[image], return_tensors="pt").to(device)
|
88 |
+
with torch.no_grad():
|
89 |
+
outputs = model(**inputs)
|
90 |
+
|
91 |
+
# Post-process outputs
|
92 |
+
outputs = image_processor.post_process_instance_segmentation(outputs, target_sizes=[image.size[::-1]])
|
93 |
+
|
94 |
+
print("Mask shape: ", outputs[0]["segmentation"].shape)
|
95 |
+
print("Mask values: ", outputs[0]["segmentation"].unique())
|
96 |
+
for segment in outputs[0]["segments_info"]:
|
97 |
+
print("Segment: ", segment)
|
98 |
+
```
|
99 |
+
|
100 |
+
```
|
101 |
+
Mask shape: torch.Size([427, 640])
|
102 |
+
Mask values: tensor([-1., 0., 1., 2., 3., 4., 5., 6.])
|
103 |
+
Segment: {'id': 0, 'label_id': 0, 'was_fused': False, 'score': 0.946127}
|
104 |
+
Segment: {'id': 1, 'label_id': 1, 'was_fused': False, 'score': 0.961582}
|
105 |
+
Segment: {'id': 2, 'label_id': 1, 'was_fused': False, 'score': 0.968367}
|
106 |
+
Segment: {'id': 3, 'label_id': 1, 'was_fused': False, 'score': 0.819527}
|
107 |
+
Segment: {'id': 4, 'label_id': 1, 'was_fused': False, 'score': 0.655761}
|
108 |
+
Segment: {'id': 5, 'label_id': 1, 'was_fused': False, 'score': 0.531299}
|
109 |
+
Segment: {'id': 6, 'label_id': 1, 'was_fused': False, 'score': 0.929477}
|
110 |
+
```
|
111 |
+
|
112 |
+
Use the following code to visualize the results:
|
113 |
+
|
114 |
+
```python
|
115 |
+
import numpy as np
|
116 |
+
import matplotlib.pyplot as plt
|
117 |
+
|
118 |
+
segmentation = outputs[0]["segmentation"].numpy()
|
119 |
+
|
120 |
+
plt.figure(figsize=(10, 10))
|
121 |
+
plt.subplot(1, 2, 1)
|
122 |
+
plt.imshow(np.array(image))
|
123 |
+
plt.axis("off")
|
124 |
+
plt.subplot(1, 2, 2)
|
125 |
+
plt.imshow(segmentation)
|
126 |
+
plt.axis("off")
|
127 |
+
plt.show()
|
128 |
+
```
|
129 |
+
|
130 |
+
![Result](https://i.imgur.com/rZmaRjD.png)
|