quarterturn
updated main.py to support the use of a quant molmo
6c65cfa
raw
history blame
8.47 kB
# note: if you have a mix of Ampere and newer, and also older than Ampere GPUs, set the environment variable
# CUDA_VISIBLE_DEVICE=1,2,3 (for example) so that one or the other is excluded.
# otherwise the script may fail with a flash attention exception.
import gradio as gr
import os
import uuid
import zipfile
import torch
from PIL import Image
import requests
from transformers import AutoProcessor, AutoModelForCausalLM, GenerationConfig, BitsAndBytesConfig
from io import BytesIO
import base64
import atexit
import shutil
def cleanup_temp_files():
# Delete the subdirectories inside the "images" directory
if os.path.exists("images"):
for dir_name in os.listdir("images"):
dir_path = os.path.join("images", dir_name)
if os.path.isdir(dir_path):
shutil.rmtree(dir_path)
# Parse command-line arguments
parser = argparse.ArgumentParser(description="Load and use a quantized model")
parser.add_argument("-q", "--use_quant", action="store_true", help="Use quantized model")
args = parser.parse_args()
if torch.cuda.is_available():
device = torch.device("cuda")
print("GPU is available. Using CUDA.")
else:
device = torch.device("cpu")
print("GPU is not available. Using CPU.")
# Load the processor
local_path = "./model/Molmo-7B-D-0924"
processor = AutoProcessor.from_pretrained(
local_path,
local_files_only=True,
trust_remote_code=True,
torch_dtype='auto',
device_map='auto'
)
# Load the model
if args.use_quant:
# Load the quantized model
quantized_local_path = "./model/molmo-7B-D-bnb-4bit"
model = AutoModelForCausalLM.from_pretrained(
quantized_local_path,
trust_remote_code=True,
torch_dtype='auto',
device_map='auto',
)
else:
# Load the non-quantized model
model = AutoModelForCausalLM.from_pretrained(
local_path,
trust_remote_code=True,
torch_dtype='auto',
device_map='auto',
)
model.to(dtype=torch.bfloat16)
def unzip_images(zip_file):
# Create a unique directory for extracted images inside the "images" directory
session_dir = os.path.join("images", str(uuid.uuid4()))
os.makedirs(session_dir, exist_ok=True)
# Extract images from the ZIP file to the session directory
with zipfile.ZipFile(zip_file, 'r') as zip_ref:
for file_info in zip_ref.infolist():
if not file_info.is_dir() and not file_info.filename.startswith("__MACOSX") and not file_info.filename.startswith("."):
zip_ref.extract(file_info, session_dir)
# Get the list of image paths
image_paths = [os.path.join(session_dir, filename) for filename in os.listdir(session_dir) if filename.lower().endswith(('.jpg', '.jpeg', '.png'))]
# Read the image data as PIL Image objects for previews
image_data = []
for image_path in image_paths:
image = Image.open(image_path)
image.thumbnail((128, 128)) # Resize the image to a maximum size of 128x128 pixels
image_data.append(image)
# Return the list of image paths and resized image data for previews
return image_paths, image_data
def generate_caption(image_path, processor, model, generation_config, bits_and_bytes_config):
# generate a caption and return it
caption = f"Caption for {image_path}"
print("Processing ", image_path)
image = Image.open(image_path)
# process the image and text
inputs = processor.process(
images=[image],
text="Describe what you see in vivid detail, without line breaks. Include information about the pose of characters, their facial expression, their height, body type, weight, the position of their limbs, and the direction of their gaze, the color of their eyes, hair, and skin. If you know a person or place name, provide it. If you know the name of an artist who may have created what you see, provide that. Do not provide opinions or value judgements. Limit your response to 276 words to avoid your description getting cut off.",
)
# move inputs to the correct device and make a batch of size 1
inputs = {k: v.to(model.device).unsqueeze(0) for k, v in inputs.items()}
inputs["images"] = inputs["images"].to(torch.bfloat16)
# generate output; maximum 500 new tokens; stop generation when is generated
with torch.autocast(device_type="cuda", enabled=True, dtype=torch.bfloat16):
output = model.generate_from_batch(
inputs,
GenerationConfig(max_new_tokens=500, stop_strings="<|endoftext|>"),
tokenizer=processor.tokenizer,
)
# only get generated tokens; decode them to text
generated_tokens = output[0, inputs["input_ids"].size(1) :]
generated_text = processor.tokenizer.decode(generated_tokens, skip_special_tokens=True)
# return the generated text
return generated_text
def process_images(image_paths, image_data):
captions = []
session_dir = os.path.dirname(image_paths[0])
for image_path in image_paths:
filename = os.path.basename(image_path) # Add this line to get the filename
if filename.lower().endswith(('.jpg', '.jpeg', '.png')):
# Process the image using the loaded model
# Use the loaded model to generate the caption
caption = generate_caption(image_path, processor, model, generation_config, bits_and_bytes_config)
captions.append(caption)
# Save the caption to a text file
with open(os.path.join(session_dir, f"{os.path.splitext(filename)[0]}.txt"), 'w') as f:
f.write(caption)
# Create a ZIP file containing the caption text files
zip_filename = f"{session_dir}.zip"
with zipfile.ZipFile(zip_filename, 'w') as zip_ref:
for filename in os.listdir(session_dir):
if filename.lower().endswith('.txt'):
zip_ref.write(os.path.join(session_dir, filename), filename)
# Delete the session directory and its contents
for filename in os.listdir(session_dir):
os.remove(os.path.join(session_dir, filename))
os.rmdir(session_dir)
return captions, zip_filename, image_paths
def format_captioned_image(image, caption):
buffered = BytesIO()
image.save(buffered, format="JPEG")
encoded_image = base64.b64encode(buffered.getvalue()).decode("utf-8")
return f"<img src='data:image/jpeg;base64,{encoded_image}' style='width: 128px; height: 128px; object-fit: cover; margin-right: 8px;' /><span>{caption}</span>"
def process_images_and_update_gallery(zip_file):
image_paths, image_data = unzip_images(zip_file)
captions, zip_filename, image_paths = process_images(image_paths, image_data)
image_captions = [format_captioned_image(img, caption) for img, caption in zip(image_data, captions)]
return gr.Markdown("\n".join(image_captions)), zip_filename
def main():
# Register the cleanup function to be called on program exit
atexit.register(cleanup_temp_files)
with gr.Blocks(css="""
.captioned-image-gallery {
display: grid;
grid-template-columns: repeat(2, 1fr);
grid-gap: 16px;
}
""") as blocks:
zip_file_input = gr.File(label="Upload ZIP file containing images")
image_gallery = gr.Markdown(label="Image Previews")
submit_button = gr.Button("Submit")
zip_download_button = gr.Button("Download Caption ZIP", visible=False)
zip_filename = gr.State("")
zip_file_input.upload(
lambda zip_file: "\n".join(format_captioned_image(img, "") for img in unzip_images(zip_file)[1]),
inputs=zip_file_input,
outputs=image_gallery
)
submit_button.click(
process_images_and_update_gallery,
inputs=[zip_file_input],
outputs=[image_gallery, zip_filename]
)
zip_filename.change(
lambda zip_filename: gr.update(visible=True),
inputs=zip_filename,
outputs=zip_download_button
)
zip_download_button.click(
lambda zip_filename: (gr.update(value=zip_filename), gr.update(visible=True), cleanup_temp_files()),
inputs=zip_filename,
outputs=[zip_file_input, zip_download_button]
)
blocks.launch(server_name='0.0.0.0')
if __name__ == "__main__":
main()