quarkss commited on
Commit
24ad46c
·
verified ·
1 Parent(s): 6201850

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,479 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: indobenchmark/indobert-large-p2
3
+ datasets: []
4
+ language: []
5
+ library_name: sentence-transformers
6
+ metrics:
7
+ - pearson_cosine
8
+ - spearman_cosine
9
+ - pearson_manhattan
10
+ - spearman_manhattan
11
+ - pearson_euclidean
12
+ - spearman_euclidean
13
+ - pearson_dot
14
+ - spearman_dot
15
+ - pearson_max
16
+ - spearman_max
17
+ pipeline_tag: sentence-similarity
18
+ tags:
19
+ - sentence-transformers
20
+ - sentence-similarity
21
+ - feature-extraction
22
+ - generated_from_trainer
23
+ - dataset_size:5749
24
+ - loss:CosineSimilarityLoss
25
+ widget:
26
+ - source_sentence: Dua ekor anjing berenang di kolam renang.
27
+ sentences:
28
+ - Anjing-anjing sedang berenang di kolam renang.
29
+ - Seekor binatang sedang berjalan di atas tanah.
30
+ - Seorang pria sedang menyeka pinggiran mangkuk.
31
+ - source_sentence: Seorang anak perempuan sedang mengiris mentega menjadi dua bagian.
32
+ sentences:
33
+ - Seorang wanita sedang mengiris tahu.
34
+ - Dua orang berkelahi.
35
+ - Seorang pria sedang menari.
36
+ - source_sentence: Seorang gadis sedang makan kue mangkuk.
37
+ sentences:
38
+ - Seorang pria sedang mengiris bawang putih dengan alat pengiris mandolin.
39
+ - Seorang pria sedang memotong dan memotong bawang.
40
+ - Seorang wanita sedang makan kue mangkuk.
41
+ - source_sentence: Sebuah helikopter mendarat di landasan helikopter.
42
+ sentences:
43
+ - Seorang pria sedang mengiris mentimun.
44
+ - Seorang pria sedang memotong batang pohon dengan kapak.
45
+ - Sebuah helikopter mendarat.
46
+ - source_sentence: Seorang pria sedang berjalan dengan seekor kuda.
47
+ sentences:
48
+ - Seorang pria sedang menuntun seekor kuda dengan tali kekang.
49
+ - Seorang pria sedang menembakkan pistol.
50
+ - Seorang wanita sedang memetik tomat.
51
+ model-index:
52
+ - name: SentenceTransformer based on indobenchmark/indobert-large-p2
53
+ results:
54
+ - task:
55
+ type: semantic-similarity
56
+ name: Semantic Similarity
57
+ dataset:
58
+ name: Unknown
59
+ type: unknown
60
+ metrics:
61
+ - type: pearson_cosine
62
+ value: 0.8691840566814281
63
+ name: Pearson Cosine
64
+ - type: spearman_cosine
65
+ value: 0.8676618157111291
66
+ name: Spearman Cosine
67
+ - type: pearson_manhattan
68
+ value: 0.8591936899214765
69
+ name: Pearson Manhattan
70
+ - type: spearman_manhattan
71
+ value: 0.8625729388794413
72
+ name: Spearman Manhattan
73
+ - type: pearson_euclidean
74
+ value: 0.8599101625523397
75
+ name: Pearson Euclidean
76
+ - type: spearman_euclidean
77
+ value: 0.8632992102966184
78
+ name: Spearman Euclidean
79
+ - type: pearson_dot
80
+ value: 0.8440663965451926
81
+ name: Pearson Dot
82
+ - type: spearman_dot
83
+ value: 0.8392116432595296
84
+ name: Spearman Dot
85
+ - type: pearson_max
86
+ value: 0.8691840566814281
87
+ name: Pearson Max
88
+ - type: spearman_max
89
+ value: 0.8676618157111291
90
+ name: Spearman Max
91
+ - type: pearson_cosine
92
+ value: 0.8401688802461491
93
+ name: Pearson Cosine
94
+ - type: spearman_cosine
95
+ value: 0.8365597846163649
96
+ name: Spearman Cosine
97
+ - type: pearson_manhattan
98
+ value: 0.8276067064758832
99
+ name: Pearson Manhattan
100
+ - type: spearman_manhattan
101
+ value: 0.8315689286193226
102
+ name: Spearman Manhattan
103
+ - type: pearson_euclidean
104
+ value: 0.8277930159560367
105
+ name: Pearson Euclidean
106
+ - type: spearman_euclidean
107
+ value: 0.831557090168861
108
+ name: Spearman Euclidean
109
+ - type: pearson_dot
110
+ value: 0.8170329546065831
111
+ name: Pearson Dot
112
+ - type: spearman_dot
113
+ value: 0.8083098402255348
114
+ name: Spearman Dot
115
+ - type: pearson_max
116
+ value: 0.8401688802461491
117
+ name: Pearson Max
118
+ - type: spearman_max
119
+ value: 0.8365597846163649
120
+ name: Spearman Max
121
+ ---
122
+
123
+ # SentenceTransformer based on indobenchmark/indobert-large-p2
124
+
125
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [indobenchmark/indobert-large-p2](https://huggingface.co/indobenchmark/indobert-large-p2). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
126
+
127
+ ## Model Details
128
+
129
+ ### Model Description
130
+ - **Model Type:** Sentence Transformer
131
+ - **Base model:** [indobenchmark/indobert-large-p2](https://huggingface.co/indobenchmark/indobert-large-p2) <!-- at revision 4b280c3bfcc1ed2d6b4589be5c876076b7d73568 -->
132
+ - **Maximum Sequence Length:** 512 tokens
133
+ - **Output Dimensionality:** 1024 tokens
134
+ - **Similarity Function:** Cosine Similarity
135
+ <!-- - **Training Dataset:** Unknown -->
136
+ <!-- - **Language:** Unknown -->
137
+ <!-- - **License:** Unknown -->
138
+
139
+ ### Model Sources
140
+
141
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
142
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
143
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
144
+
145
+ ### Full Model Architecture
146
+
147
+ ```
148
+ SentenceTransformer(
149
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
150
+ (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
151
+ )
152
+ ```
153
+
154
+ ## Usage
155
+
156
+ ### Direct Usage (Sentence Transformers)
157
+
158
+ First install the Sentence Transformers library:
159
+
160
+ ```bash
161
+ pip install -U sentence-transformers
162
+ ```
163
+
164
+ Then you can load this model and run inference.
165
+ ```python
166
+ from sentence_transformers import SentenceTransformer
167
+
168
+ # Download from the 🤗 Hub
169
+ model = SentenceTransformer("quarkss/indobert-large-stsb")
170
+ # Run inference
171
+ sentences = [
172
+ 'Seorang pria sedang berjalan dengan seekor kuda.',
173
+ 'Seorang pria sedang menuntun seekor kuda dengan tali kekang.',
174
+ 'Seorang pria sedang menembakkan pistol.',
175
+ ]
176
+ embeddings = model.encode(sentences)
177
+ print(embeddings.shape)
178
+ # [3, 1024]
179
+
180
+ # Get the similarity scores for the embeddings
181
+ similarities = model.similarity(embeddings, embeddings)
182
+ print(similarities.shape)
183
+ # [3, 3]
184
+ ```
185
+
186
+ <!--
187
+ ### Direct Usage (Transformers)
188
+
189
+ <details><summary>Click to see the direct usage in Transformers</summary>
190
+
191
+ </details>
192
+ -->
193
+
194
+ <!--
195
+ ### Downstream Usage (Sentence Transformers)
196
+
197
+ You can finetune this model on your own dataset.
198
+
199
+ <details><summary>Click to expand</summary>
200
+
201
+ </details>
202
+ -->
203
+
204
+ <!--
205
+ ### Out-of-Scope Use
206
+
207
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
208
+ -->
209
+
210
+ ## Evaluation
211
+
212
+ ### Metrics
213
+
214
+ #### Semantic Similarity
215
+
216
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
217
+
218
+ | Metric | Value |
219
+ |:--------------------|:-----------|
220
+ | pearson_cosine | 0.8692 |
221
+ | **spearman_cosine** | **0.8677** |
222
+ | pearson_manhattan | 0.8592 |
223
+ | spearman_manhattan | 0.8626 |
224
+ | pearson_euclidean | 0.8599 |
225
+ | spearman_euclidean | 0.8633 |
226
+ | pearson_dot | 0.8441 |
227
+ | spearman_dot | 0.8392 |
228
+ | pearson_max | 0.8692 |
229
+ | spearman_max | 0.8677 |
230
+
231
+ #### Semantic Similarity
232
+
233
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
234
+
235
+ | Metric | Value |
236
+ |:-------------------|:-----------|
237
+ | pearson_cosine | 0.8402 |
238
+ | spearman_cosine | 0.8366 |
239
+ | pearson_manhattan | 0.8276 |
240
+ | spearman_manhattan | 0.8316 |
241
+ | pearson_euclidean | 0.8278 |
242
+ | spearman_euclidean | 0.8316 |
243
+ | pearson_dot | 0.817 |
244
+ | spearman_dot | 0.8083 |
245
+ | pearson_max | 0.8402 |
246
+ | **spearman_max** | **0.8366** |
247
+
248
+ <!--
249
+ ## Bias, Risks and Limitations
250
+
251
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
252
+ -->
253
+
254
+ <!--
255
+ ### Recommendations
256
+
257
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
258
+ -->
259
+
260
+ ## Training Details
261
+
262
+ ### Training Dataset
263
+
264
+ #### Unnamed Dataset
265
+
266
+
267
+ * Size: 5,749 training samples
268
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
269
+ * Approximate statistics based on the first 1000 samples:
270
+ | | sentence1 | sentence2 | score |
271
+ |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------|
272
+ | type | string | string | float |
273
+ | details | <ul><li>min: 6 tokens</li><li>mean: 9.65 tokens</li><li>max: 25 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 9.59 tokens</li><li>max: 24 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.54</li><li>max: 1.0</li></ul> |
274
+ * Samples:
275
+ | sentence1 | sentence2 | score |
276
+ |:-----------------------------------------------------------------------|:-----------------------------------------------------------------------------------------|:------------------|
277
+ | <code>Sebuah pesawat sedang lepas landas.</code> | <code>Sebuah pesawat terbang sedang lepas landas.</code> | <code>1.0</code> |
278
+ | <code>Seorang pria sedang memainkan seruling besar.</code> | <code>Seorang pria sedang memainkan seruling.</code> | <code>0.76</code> |
279
+ | <code>Seorang pria sedang mengoleskan keju parut di atas pizza.</code> | <code>Seorang pria sedang mengoleskan keju parut di atas pizza yang belum matang.</code> | <code>0.76</code> |
280
+ * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
281
+ ```json
282
+ {
283
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
284
+ }
285
+ ```
286
+
287
+ ### Training Hyperparameters
288
+ #### Non-Default Hyperparameters
289
+
290
+ - `eval_strategy`: steps
291
+ - `per_device_train_batch_size`: 16
292
+ - `per_device_eval_batch_size`: 16
293
+ - `learning_rate`: 2e-05
294
+ - `weight_decay`: 0.01
295
+ - `num_train_epochs`: 5
296
+ - `warmup_ratio`: 0.1
297
+ - `fp16`: True
298
+
299
+ #### All Hyperparameters
300
+ <details><summary>Click to expand</summary>
301
+
302
+ - `overwrite_output_dir`: False
303
+ - `do_predict`: False
304
+ - `eval_strategy`: steps
305
+ - `prediction_loss_only`: True
306
+ - `per_device_train_batch_size`: 16
307
+ - `per_device_eval_batch_size`: 16
308
+ - `per_gpu_train_batch_size`: None
309
+ - `per_gpu_eval_batch_size`: None
310
+ - `gradient_accumulation_steps`: 1
311
+ - `eval_accumulation_steps`: None
312
+ - `learning_rate`: 2e-05
313
+ - `weight_decay`: 0.01
314
+ - `adam_beta1`: 0.9
315
+ - `adam_beta2`: 0.999
316
+ - `adam_epsilon`: 1e-08
317
+ - `max_grad_norm`: 1.0
318
+ - `num_train_epochs`: 5
319
+ - `max_steps`: -1
320
+ - `lr_scheduler_type`: linear
321
+ - `lr_scheduler_kwargs`: {}
322
+ - `warmup_ratio`: 0.1
323
+ - `warmup_steps`: 0
324
+ - `log_level`: passive
325
+ - `log_level_replica`: warning
326
+ - `log_on_each_node`: True
327
+ - `logging_nan_inf_filter`: True
328
+ - `save_safetensors`: True
329
+ - `save_on_each_node`: False
330
+ - `save_only_model`: False
331
+ - `restore_callback_states_from_checkpoint`: False
332
+ - `no_cuda`: False
333
+ - `use_cpu`: False
334
+ - `use_mps_device`: False
335
+ - `seed`: 42
336
+ - `data_seed`: None
337
+ - `jit_mode_eval`: False
338
+ - `use_ipex`: False
339
+ - `bf16`: False
340
+ - `fp16`: True
341
+ - `fp16_opt_level`: O1
342
+ - `half_precision_backend`: auto
343
+ - `bf16_full_eval`: False
344
+ - `fp16_full_eval`: False
345
+ - `tf32`: None
346
+ - `local_rank`: 0
347
+ - `ddp_backend`: None
348
+ - `tpu_num_cores`: None
349
+ - `tpu_metrics_debug`: False
350
+ - `debug`: []
351
+ - `dataloader_drop_last`: False
352
+ - `dataloader_num_workers`: 0
353
+ - `dataloader_prefetch_factor`: None
354
+ - `past_index`: -1
355
+ - `disable_tqdm`: False
356
+ - `remove_unused_columns`: True
357
+ - `label_names`: None
358
+ - `load_best_model_at_end`: False
359
+ - `ignore_data_skip`: False
360
+ - `fsdp`: []
361
+ - `fsdp_min_num_params`: 0
362
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
363
+ - `fsdp_transformer_layer_cls_to_wrap`: None
364
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
365
+ - `deepspeed`: None
366
+ - `label_smoothing_factor`: 0.0
367
+ - `optim`: adamw_torch
368
+ - `optim_args`: None
369
+ - `adafactor`: False
370
+ - `group_by_length`: False
371
+ - `length_column_name`: length
372
+ - `ddp_find_unused_parameters`: None
373
+ - `ddp_bucket_cap_mb`: None
374
+ - `ddp_broadcast_buffers`: False
375
+ - `dataloader_pin_memory`: True
376
+ - `dataloader_persistent_workers`: False
377
+ - `skip_memory_metrics`: True
378
+ - `use_legacy_prediction_loop`: False
379
+ - `push_to_hub`: False
380
+ - `resume_from_checkpoint`: None
381
+ - `hub_model_id`: None
382
+ - `hub_strategy`: every_save
383
+ - `hub_private_repo`: False
384
+ - `hub_always_push`: False
385
+ - `gradient_checkpointing`: False
386
+ - `gradient_checkpointing_kwargs`: None
387
+ - `include_inputs_for_metrics`: False
388
+ - `eval_do_concat_batches`: True
389
+ - `fp16_backend`: auto
390
+ - `push_to_hub_model_id`: None
391
+ - `push_to_hub_organization`: None
392
+ - `mp_parameters`:
393
+ - `auto_find_batch_size`: False
394
+ - `full_determinism`: False
395
+ - `torchdynamo`: None
396
+ - `ray_scope`: last
397
+ - `ddp_timeout`: 1800
398
+ - `torch_compile`: False
399
+ - `torch_compile_backend`: None
400
+ - `torch_compile_mode`: None
401
+ - `dispatch_batches`: None
402
+ - `split_batches`: None
403
+ - `include_tokens_per_second`: False
404
+ - `include_num_input_tokens_seen`: False
405
+ - `neftune_noise_alpha`: None
406
+ - `optim_target_modules`: None
407
+ - `batch_eval_metrics`: False
408
+ - `eval_on_start`: False
409
+ - `batch_sampler`: batch_sampler
410
+ - `multi_dataset_batch_sampler`: proportional
411
+
412
+ </details>
413
+
414
+ ### Training Logs
415
+ | Epoch | Step | Training Loss | spearman_cosine | spearman_max |
416
+ |:------:|:----:|:-------------:|:---------------:|:------------:|
417
+ | 0.2778 | 100 | 0.0867 | - | - |
418
+ | 0.5556 | 200 | 0.0351 | - | - |
419
+ | 0.8333 | 300 | 0.0303 | - | - |
420
+ | 1.1111 | 400 | 0.0202 | - | - |
421
+ | 1.3889 | 500 | 0.0154 | 0.8612 | - |
422
+ | 1.6667 | 600 | 0.0136 | - | - |
423
+ | 1.9444 | 700 | 0.0145 | - | - |
424
+ | 2.2222 | 800 | 0.0082 | - | - |
425
+ | 2.5 | 900 | 0.0072 | - | - |
426
+ | 2.7778 | 1000 | 0.0068 | 0.8660 | - |
427
+ | 3.0556 | 1100 | 0.0065 | - | - |
428
+ | 3.3333 | 1200 | 0.0044 | - | - |
429
+ | 3.6111 | 1300 | 0.0044 | - | - |
430
+ | 3.8889 | 1400 | 0.0045 | - | - |
431
+ | 4.1667 | 1500 | 0.0038 | 0.8677 | - |
432
+ | 4.4444 | 1600 | 0.0038 | - | - |
433
+ | 4.7222 | 1700 | 0.0035 | - | - |
434
+ | 5.0 | 1800 | 0.0034 | - | 0.8366 |
435
+
436
+
437
+ ### Framework Versions
438
+ - Python: 3.10.13
439
+ - Sentence Transformers: 3.0.1
440
+ - Transformers: 4.42.4
441
+ - PyTorch: 2.0.1+cu117
442
+ - Accelerate: 0.32.1
443
+ - Datasets: 2.17.0
444
+ - Tokenizers: 0.19.1
445
+
446
+ ## Citation
447
+
448
+ ### BibTeX
449
+
450
+ #### Sentence Transformers
451
+ ```bibtex
452
+ @inproceedings{reimers-2019-sentence-bert,
453
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
454
+ author = "Reimers, Nils and Gurevych, Iryna",
455
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
456
+ month = "11",
457
+ year = "2019",
458
+ publisher = "Association for Computational Linguistics",
459
+ url = "https://arxiv.org/abs/1908.10084",
460
+ }
461
+ ```
462
+
463
+ <!--
464
+ ## Glossary
465
+
466
+ *Clearly define terms in order to be accessible across audiences.*
467
+ -->
468
+
469
+ <!--
470
+ ## Model Card Authors
471
+
472
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
473
+ -->
474
+
475
+ <!--
476
+ ## Model Card Contact
477
+
478
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
479
+ -->
config.json ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "models\\indobert-large-p2-stsb",
3
+ "_num_labels": 5,
4
+ "architectures": [
5
+ "BertModel"
6
+ ],
7
+ "attention_probs_dropout_prob": 0.1,
8
+ "classifier_dropout": null,
9
+ "directionality": "bidi",
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 1024,
13
+ "id2label": {
14
+ "0": "LABEL_0",
15
+ "1": "LABEL_1",
16
+ "2": "LABEL_2",
17
+ "3": "LABEL_3",
18
+ "4": "LABEL_4"
19
+ },
20
+ "initializer_range": 0.02,
21
+ "intermediate_size": 4096,
22
+ "label2id": {
23
+ "LABEL_0": 0,
24
+ "LABEL_1": 1,
25
+ "LABEL_2": 2,
26
+ "LABEL_3": 3,
27
+ "LABEL_4": 4
28
+ },
29
+ "layer_norm_eps": 1e-12,
30
+ "max_position_embeddings": 512,
31
+ "model_type": "bert",
32
+ "num_attention_heads": 16,
33
+ "num_hidden_layers": 24,
34
+ "output_past": true,
35
+ "pad_token_id": 0,
36
+ "pooler_fc_size": 768,
37
+ "pooler_num_attention_heads": 12,
38
+ "pooler_num_fc_layers": 3,
39
+ "pooler_size_per_head": 128,
40
+ "pooler_type": "first_token_transform",
41
+ "position_embedding_type": "absolute",
42
+ "torch_dtype": "float32",
43
+ "transformers_version": "4.42.4",
44
+ "type_vocab_size": 2,
45
+ "use_cache": true,
46
+ "vocab_size": 30522
47
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.42.4",
5
+ "pytorch": "2.0.1+cu117"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5160521d9e40945eb2a5e0242015cc2c10a71a94f64fabdc3102194d3cc7129e
3
+ size 1340612432
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "max_length": 512,
50
+ "model_max_length": 512,
51
+ "never_split": null,
52
+ "pad_to_multiple_of": null,
53
+ "pad_token": "[PAD]",
54
+ "pad_token_type_id": 0,
55
+ "padding_side": "right",
56
+ "sep_token": "[SEP]",
57
+ "stride": 0,
58
+ "strip_accents": null,
59
+ "tokenize_chinese_chars": true,
60
+ "tokenizer_class": "BertTokenizer",
61
+ "truncation_side": "right",
62
+ "truncation_strategy": "longest_first",
63
+ "unk_token": "[UNK]"
64
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff