Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -35,7 +35,7 @@ More details on model performance across various devices, can be found
|
|
35 |
|
36 |
| Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
37 |
| ---|---|---|---|---|---|---|---|
|
38 |
-
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite |
|
39 |
|
40 |
|
41 |
|
@@ -94,6 +94,16 @@ device. This script does the following:
|
|
94 |
python -m qai_hub_models.models.yolov7.export
|
95 |
```
|
96 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
|
98 |
|
99 |
## How does this work?
|
@@ -115,7 +125,6 @@ from qai_hub_models.models.yolov7 import Model
|
|
115 |
|
116 |
# Load the model
|
117 |
torch_model = Model.from_pretrained()
|
118 |
-
torch_model.eval()
|
119 |
|
120 |
# Device
|
121 |
device = hub.Device("Samsung Galaxy S23")
|
|
|
35 |
|
36 |
| Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
37 |
| ---|---|---|---|---|---|---|---|
|
38 |
+
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 24.96 ms | 36 - 68 MB | FP16 | GPU | [Yolo-v7.tflite](https://huggingface.co/qualcomm/Yolo-v7/blob/main/Yolo-v7.tflite)
|
39 |
|
40 |
|
41 |
|
|
|
94 |
python -m qai_hub_models.models.yolov7.export
|
95 |
```
|
96 |
|
97 |
+
```
|
98 |
+
Profile Job summary of Yolo-v7
|
99 |
+
--------------------------------------------------
|
100 |
+
Device: SA8775 (Proxy) (13)
|
101 |
+
Estimated Inference Time: 24.59 ms
|
102 |
+
Estimated Peak Memory Range: 38.27-87.46 MB
|
103 |
+
Compute Units: GPU (145),CPU (70) | Total (215)
|
104 |
+
|
105 |
+
|
106 |
+
```
|
107 |
|
108 |
|
109 |
## How does this work?
|
|
|
125 |
|
126 |
# Load the model
|
127 |
torch_model = Model.from_pretrained()
|
|
|
128 |
|
129 |
# Device
|
130 |
device = hub.Device("Samsung Galaxy S23")
|