Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -33,8 +33,8 @@ More details on model performance across various devices, can be found
|
|
33 |
|
34 |
| Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
35 |
| ---|---|---|---|---|---|---|---|
|
36 |
-
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite |
|
37 |
-
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 7.
|
38 |
|
39 |
|
40 |
## Installation
|
@@ -94,16 +94,16 @@ python -m qai_hub_models.models.yolov6.export
|
|
94 |
```
|
95 |
Profile Job summary of Yolo-v6
|
96 |
--------------------------------------------------
|
97 |
-
Device: Samsung Galaxy
|
98 |
-
Estimated Inference Time:
|
99 |
-
Estimated Peak Memory Range: 0.
|
100 |
Compute Units: NPU (182) | Total (182)
|
101 |
|
102 |
Profile Job summary of Yolo-v6
|
103 |
--------------------------------------------------
|
104 |
-
Device: Samsung Galaxy
|
105 |
-
Estimated Inference Time:
|
106 |
-
Estimated Peak Memory Range: 4.70-
|
107 |
Compute Units: NPU (230) | Total (230)
|
108 |
|
109 |
|
@@ -223,7 +223,7 @@ Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
|
|
223 |
## License
|
224 |
- The license for the original implementation of Yolo-v6 can be found
|
225 |
[here](https://github.com/meituan/YOLOv6/blob/47625514e7480706a46ff3c0cd0252907ac12f22/LICENSE).
|
226 |
-
- The license for the compiled assets for on-device deployment can be found [here](
|
227 |
|
228 |
## References
|
229 |
* [YOLOv6: A Single-Stage Object Detection Framework for Industrial Applications](https://arxiv.org/abs/2209.02976)
|
|
|
33 |
|
34 |
| Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
35 |
| ---|---|---|---|---|---|---|---|
|
36 |
+
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 8.48 ms | 0 - 3 MB | FP16 | NPU | [Yolo-v6.tflite](https://huggingface.co/qualcomm/Yolo-v6/blob/main/Yolo-v6.tflite)
|
37 |
+
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 7.275 ms | 5 - 17 MB | FP16 | NPU | [Yolo-v6.so](https://huggingface.co/qualcomm/Yolo-v6/blob/main/Yolo-v6.so)
|
38 |
|
39 |
|
40 |
## Installation
|
|
|
94 |
```
|
95 |
Profile Job summary of Yolo-v6
|
96 |
--------------------------------------------------
|
97 |
+
Device: Samsung Galaxy S24 (14)
|
98 |
+
Estimated Inference Time: 6.05 ms
|
99 |
+
Estimated Peak Memory Range: 0.02-70.91 MB
|
100 |
Compute Units: NPU (182) | Total (182)
|
101 |
|
102 |
Profile Job summary of Yolo-v6
|
103 |
--------------------------------------------------
|
104 |
+
Device: Samsung Galaxy S24 (14)
|
105 |
+
Estimated Inference Time: 5.17 ms
|
106 |
+
Estimated Peak Memory Range: 4.70-90.05 MB
|
107 |
Compute Units: NPU (230) | Total (230)
|
108 |
|
109 |
|
|
|
223 |
## License
|
224 |
- The license for the original implementation of Yolo-v6 can be found
|
225 |
[here](https://github.com/meituan/YOLOv6/blob/47625514e7480706a46ff3c0cd0252907ac12f22/LICENSE).
|
226 |
+
- The license for the compiled assets for on-device deployment can be found [here]({deploy_license_url})
|
227 |
|
228 |
## References
|
229 |
* [YOLOv6: A Single-Stage Object Detection Framework for Industrial Applications](https://arxiv.org/abs/2209.02976)
|