qaihm-bot commited on
Commit
ece22ed
1 Parent(s): 24a3d1c

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +9 -9
README.md CHANGED
@@ -33,8 +33,8 @@ More details on model performance across various devices, can be found
33
 
34
  | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
35
  | ---|---|---|---|---|---|---|---|
36
- | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 7.848 ms | 0 - 7 MB | FP16 | NPU | [Yolo-v6.tflite](https://huggingface.co/qualcomm/Yolo-v6/blob/main/Yolo-v6.tflite)
37
- | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 7.283 ms | 5 - 17 MB | FP16 | NPU | [Yolo-v6.so](https://huggingface.co/qualcomm/Yolo-v6/blob/main/Yolo-v6.so)
38
 
39
 
40
  ## Installation
@@ -94,16 +94,16 @@ python -m qai_hub_models.models.yolov6.export
94
  ```
95
  Profile Job summary of Yolo-v6
96
  --------------------------------------------------
97
- Device: Samsung Galaxy S23 Ultra (13)
98
- Estimated Inference Time: 7.85 ms
99
- Estimated Peak Memory Range: 0.03-6.90 MB
100
  Compute Units: NPU (182) | Total (182)
101
 
102
  Profile Job summary of Yolo-v6
103
  --------------------------------------------------
104
- Device: Samsung Galaxy S23 Ultra (13)
105
- Estimated Inference Time: 7.28 ms
106
- Estimated Peak Memory Range: 4.70-16.65 MB
107
  Compute Units: NPU (230) | Total (230)
108
 
109
 
@@ -223,7 +223,7 @@ Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
223
  ## License
224
  - The license for the original implementation of Yolo-v6 can be found
225
  [here](https://github.com/meituan/YOLOv6/blob/47625514e7480706a46ff3c0cd0252907ac12f22/LICENSE).
226
- - The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf).
227
 
228
  ## References
229
  * [YOLOv6: A Single-Stage Object Detection Framework for Industrial Applications](https://arxiv.org/abs/2209.02976)
 
33
 
34
  | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
35
  | ---|---|---|---|---|---|---|---|
36
+ | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 8.48 ms | 0 - 3 MB | FP16 | NPU | [Yolo-v6.tflite](https://huggingface.co/qualcomm/Yolo-v6/blob/main/Yolo-v6.tflite)
37
+ | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 7.275 ms | 5 - 17 MB | FP16 | NPU | [Yolo-v6.so](https://huggingface.co/qualcomm/Yolo-v6/blob/main/Yolo-v6.so)
38
 
39
 
40
  ## Installation
 
94
  ```
95
  Profile Job summary of Yolo-v6
96
  --------------------------------------------------
97
+ Device: Samsung Galaxy S24 (14)
98
+ Estimated Inference Time: 6.05 ms
99
+ Estimated Peak Memory Range: 0.02-70.91 MB
100
  Compute Units: NPU (182) | Total (182)
101
 
102
  Profile Job summary of Yolo-v6
103
  --------------------------------------------------
104
+ Device: Samsung Galaxy S24 (14)
105
+ Estimated Inference Time: 5.17 ms
106
+ Estimated Peak Memory Range: 4.70-90.05 MB
107
  Compute Units: NPU (230) | Total (230)
108
 
109
 
 
223
  ## License
224
  - The license for the original implementation of Yolo-v6 can be found
225
  [here](https://github.com/meituan/YOLOv6/blob/47625514e7480706a46ff3c0cd0252907ac12f22/LICENSE).
226
+ - The license for the compiled assets for on-device deployment can be found [here]({deploy_license_url})
227
 
228
  ## References
229
  * [YOLOv6: A Single-Stage Object Detection Framework for Industrial Applications](https://arxiv.org/abs/2209.02976)