Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -31,10 +31,13 @@ More details on model performance across various devices, can be found
|
|
31 |
- Model size: 12.2 MB
|
32 |
|
33 |
|
|
|
|
|
34 |
| Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
35 |
| ---|---|---|---|---|---|---|---|
|
36 |
-
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 5.
|
37 |
-
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 5.
|
|
|
38 |
|
39 |
|
40 |
## Installation
|
@@ -96,15 +99,17 @@ python -m qai_hub_models.models.yolov8_det.export
|
|
96 |
Profile Job summary of YOLOv8-Detection
|
97 |
--------------------------------------------------
|
98 |
Device: Snapdragon X Elite CRD (11)
|
99 |
-
Estimated Inference Time: 5.
|
100 |
Estimated Peak Memory Range: 4.70-4.70 MB
|
101 |
Compute Units: NPU (285) | Total (285)
|
102 |
|
103 |
|
104 |
```
|
|
|
|
|
105 |
## How does this work?
|
106 |
|
107 |
-
This [export script](https://
|
108 |
leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
|
109 |
on-device. Lets go through each step below in detail:
|
110 |
|
@@ -181,6 +186,7 @@ spot check the output with expected output.
|
|
181 |
AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup).
|
182 |
|
183 |
|
|
|
184 |
## Run demo on a cloud-hosted device
|
185 |
|
186 |
You can also run the demo on-device.
|
@@ -217,7 +223,7 @@ Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
|
|
217 |
## License
|
218 |
- The license for the original implementation of YOLOv8-Detection can be found
|
219 |
[here](https://github.com/ultralytics/ultralytics/blob/main/LICENSE).
|
220 |
-
- The license for the compiled assets for on-device deployment can be found [here](
|
221 |
|
222 |
## References
|
223 |
* [Ultralytics YOLOv8 Docs: Object Detection](https://docs.ultralytics.com/tasks/detect/)
|
|
|
31 |
- Model size: 12.2 MB
|
32 |
|
33 |
|
34 |
+
|
35 |
+
|
36 |
| Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
37 |
| ---|---|---|---|---|---|---|---|
|
38 |
+
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 5.9 ms | 0 - 11 MB | FP16 | NPU | [YOLOv8-Detection.tflite](https://huggingface.co/qualcomm/YOLOv8-Detection/blob/main/YOLOv8-Detection.tflite)
|
39 |
+
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 5.248 ms | 5 - 17 MB | FP16 | NPU | [YOLOv8-Detection.so](https://huggingface.co/qualcomm/YOLOv8-Detection/blob/main/YOLOv8-Detection.so)
|
40 |
+
|
41 |
|
42 |
|
43 |
## Installation
|
|
|
99 |
Profile Job summary of YOLOv8-Detection
|
100 |
--------------------------------------------------
|
101 |
Device: Snapdragon X Elite CRD (11)
|
102 |
+
Estimated Inference Time: 5.77 ms
|
103 |
Estimated Peak Memory Range: 4.70-4.70 MB
|
104 |
Compute Units: NPU (285) | Total (285)
|
105 |
|
106 |
|
107 |
```
|
108 |
+
|
109 |
+
|
110 |
## How does this work?
|
111 |
|
112 |
+
This [export script](https://aihub.qualcomm.com/models/yolov8_det/qai_hub_models/models/YOLOv8-Detection/export.py)
|
113 |
leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
|
114 |
on-device. Lets go through each step below in detail:
|
115 |
|
|
|
186 |
AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup).
|
187 |
|
188 |
|
189 |
+
|
190 |
## Run demo on a cloud-hosted device
|
191 |
|
192 |
You can also run the demo on-device.
|
|
|
223 |
## License
|
224 |
- The license for the original implementation of YOLOv8-Detection can be found
|
225 |
[here](https://github.com/ultralytics/ultralytics/blob/main/LICENSE).
|
226 |
+
- The license for the compiled assets for on-device deployment can be found [here](https://github.com/ultralytics/ultralytics/blob/main/LICENSE)
|
227 |
|
228 |
## References
|
229 |
* [Ultralytics YOLOv8 Docs: Object Detection](https://docs.ultralytics.com/tasks/detect/)
|