Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
|
@@ -38,30 +38,30 @@ More details on model performance across various devices, can be found
|
|
| 38 |
|
| 39 |
| Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
| 40 |
|---|---|---|---|---|---|---|---|---|
|
| 41 |
-
|
|
| 42 |
-
|
|
| 43 |
-
|
|
| 44 |
-
|
|
| 45 |
-
|
|
| 46 |
-
|
|
| 47 |
-
|
|
| 48 |
-
|
|
| 49 |
-
|
|
| 50 |
-
|
|
| 51 |
-
|
|
| 52 |
-
|
|
| 53 |
-
|
|
| 54 |
-
|
|
| 55 |
-
|
|
| 56 |
-
|
|
| 57 |
-
|
|
| 58 |
-
|
|
| 59 |
-
|
|
| 60 |
-
|
|
| 61 |
-
|
|
| 62 |
-
|
|
| 63 |
-
|
|
| 64 |
-
|
|
| 65 |
|
| 66 |
|
| 67 |
|
|
@@ -122,22 +122,22 @@ python -m qai_hub_models.models.whisper_small_en.export
|
|
| 122 |
```
|
| 123 |
Profiling Results
|
| 124 |
------------------------------------------------------------
|
| 125 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 126 |
Device : Samsung Galaxy S23 (13)
|
| 127 |
Runtime : TFLITE
|
| 128 |
-
Estimated inference time (ms) :
|
| 129 |
Estimated peak memory usage (MB): [16, 43]
|
| 130 |
Total # Ops : 2573
|
| 131 |
Compute Unit(s) : NPU (2573 ops)
|
| 132 |
-
|
| 133 |
-
------------------------------------------------------------
|
| 134 |
-
WhisperEncoder
|
| 135 |
-
Device : Samsung Galaxy S23 (13)
|
| 136 |
-
Runtime : TFLITE
|
| 137 |
-
Estimated inference time (ms) : 694.7
|
| 138 |
-
Estimated peak memory usage (MB): [107, 184]
|
| 139 |
-
Total # Ops : 911
|
| 140 |
-
Compute Unit(s) : GPU (900 ops) CPU (11 ops)
|
| 141 |
```
|
| 142 |
|
| 143 |
|
|
@@ -159,43 +159,26 @@ import qai_hub as hub
|
|
| 159 |
from qai_hub_models.models.whisper_small_en import Model
|
| 160 |
|
| 161 |
# Load the model
|
| 162 |
-
|
| 163 |
-
decoder_model = model.decoder
|
| 164 |
-
encoder_model = model.encoder
|
| 165 |
|
| 166 |
# Device
|
| 167 |
-
device = hub.Device("Samsung Galaxy
|
| 168 |
|
| 169 |
# Trace model
|
| 170 |
-
|
| 171 |
-
|
| 172 |
|
| 173 |
-
|
| 174 |
|
| 175 |
# Compile model on a specific device
|
| 176 |
-
|
| 177 |
-
model=
|
| 178 |
device=device,
|
| 179 |
-
input_specs=
|
| 180 |
)
|
| 181 |
|
| 182 |
# Get target model to run on-device
|
| 183 |
-
|
| 184 |
-
# Trace model
|
| 185 |
-
encoder_input_shape = encoder_model.get_input_spec()
|
| 186 |
-
encoder_sample_inputs = encoder_model.sample_inputs()
|
| 187 |
-
|
| 188 |
-
traced_encoder_model = torch.jit.trace(encoder_model, [torch.tensor(data[0]) for _, data in encoder_sample_inputs.items()])
|
| 189 |
-
|
| 190 |
-
# Compile model on a specific device
|
| 191 |
-
encoder_compile_job = hub.submit_compile_job(
|
| 192 |
-
model=traced_encoder_model ,
|
| 193 |
-
device=device,
|
| 194 |
-
input_specs=encoder_model.get_input_spec(),
|
| 195 |
-
)
|
| 196 |
-
|
| 197 |
-
# Get target model to run on-device
|
| 198 |
-
encoder_target_model = encoder_compile_job.get_target_model()
|
| 199 |
|
| 200 |
```
|
| 201 |
|
|
@@ -207,15 +190,11 @@ After compiling models from step 1. Models can be profiled model on-device using
|
|
| 207 |
provisioned in the cloud. Once the job is submitted, you can navigate to a
|
| 208 |
provided job URL to view a variety of on-device performance metrics.
|
| 209 |
```python
|
| 210 |
-
|
| 211 |
-
model=
|
| 212 |
-
device=device,
|
| 213 |
-
)
|
| 214 |
-
encoder_profile_job = hub.submit_profile_job(
|
| 215 |
-
model=encoder_target_model,
|
| 216 |
device=device,
|
| 217 |
)
|
| 218 |
-
|
| 219 |
```
|
| 220 |
|
| 221 |
Step 3: **Verify on-device accuracy**
|
|
@@ -223,20 +202,13 @@ Step 3: **Verify on-device accuracy**
|
|
| 223 |
To verify the accuracy of the model on-device, you can run on-device inference
|
| 224 |
on sample input data on the same cloud hosted device.
|
| 225 |
```python
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
model=
|
| 229 |
-
device=device,
|
| 230 |
-
inputs=decoder_input_data,
|
| 231 |
-
)
|
| 232 |
-
decoder_inference_job.download_output_data()
|
| 233 |
-
encoder_input_data = encoder_model.sample_inputs()
|
| 234 |
-
encoder_inference_job = hub.submit_inference_job(
|
| 235 |
-
model=encoder_target_model,
|
| 236 |
device=device,
|
| 237 |
-
inputs=
|
| 238 |
)
|
| 239 |
-
|
| 240 |
|
| 241 |
```
|
| 242 |
With the output of the model, you can compute like PSNR, relative errors or
|
|
|
|
| 38 |
|
| 39 |
| Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
| 40 |
|---|---|---|---|---|---|---|---|---|
|
| 41 |
+
| WhisperEncoderInf | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 874.236 ms | 44 - 122 MB | FP16 | GPU | [Whisper-Small-En.tflite](https://huggingface.co/qualcomm/Whisper-Small-En/blob/main/WhisperEncoderInf.tflite) |
|
| 42 |
+
| WhisperEncoderInf | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 813.828 ms | 108 - 200 MB | FP16 | GPU | [Whisper-Small-En.tflite](https://huggingface.co/qualcomm/Whisper-Small-En/blob/main/WhisperEncoderInf.tflite) |
|
| 43 |
+
| WhisperEncoderInf | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 541.073 ms | 108 - 139 MB | FP16 | GPU | [Whisper-Small-En.tflite](https://huggingface.co/qualcomm/Whisper-Small-En/blob/main/WhisperEncoderInf.tflite) |
|
| 44 |
+
| WhisperEncoderInf | SA7255P ADP | SA7255P | TFLITE | 4496.292 ms | 108 - 141 MB | FP16 | GPU | [Whisper-Small-En.tflite](https://huggingface.co/qualcomm/Whisper-Small-En/blob/main/WhisperEncoderInf.tflite) |
|
| 45 |
+
| WhisperEncoderInf | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 875.948 ms | 18 - 124 MB | FP16 | GPU | [Whisper-Small-En.tflite](https://huggingface.co/qualcomm/Whisper-Small-En/blob/main/WhisperEncoderInf.tflite) |
|
| 46 |
+
| WhisperEncoderInf | SA8295P ADP | SA8295P | TFLITE | 654.569 ms | 109 - 141 MB | FP16 | GPU | [Whisper-Small-En.tflite](https://huggingface.co/qualcomm/Whisper-Small-En/blob/main/WhisperEncoderInf.tflite) |
|
| 47 |
+
| WhisperEncoderInf | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 691.176 ms | 110 - 199 MB | FP16 | GPU | [Whisper-Small-En.tflite](https://huggingface.co/qualcomm/Whisper-Small-En/blob/main/WhisperEncoderInf.tflite) |
|
| 48 |
+
| WhisperEncoderInf | SA8775P ADP | SA8775P | TFLITE | 1289.865 ms | 95 - 128 MB | FP16 | GPU | [Whisper-Small-En.tflite](https://huggingface.co/qualcomm/Whisper-Small-En/blob/main/WhisperEncoderInf.tflite) |
|
| 49 |
+
| WhisperEncoderInf | QCS8275 (Proxy) | QCS8275 Proxy | TFLITE | 4496.292 ms | 108 - 141 MB | FP16 | GPU | [Whisper-Small-En.tflite](https://huggingface.co/qualcomm/Whisper-Small-En/blob/main/WhisperEncoderInf.tflite) |
|
| 50 |
+
| WhisperEncoderInf | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 820.313 ms | 110 - 180 MB | FP16 | GPU | [Whisper-Small-En.tflite](https://huggingface.co/qualcomm/Whisper-Small-En/blob/main/WhisperEncoderInf.tflite) |
|
| 51 |
+
| WhisperEncoderInf | QCS9075 (Proxy) | QCS9075 Proxy | TFLITE | 1289.865 ms | 95 - 128 MB | FP16 | GPU | [Whisper-Small-En.tflite](https://huggingface.co/qualcomm/Whisper-Small-En/blob/main/WhisperEncoderInf.tflite) |
|
| 52 |
+
| WhisperEncoderInf | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 1059.62 ms | 103 - 203 MB | FP16 | GPU | [Whisper-Small-En.tflite](https://huggingface.co/qualcomm/Whisper-Small-En/blob/main/WhisperEncoderInf.tflite) |
|
| 53 |
+
| WhisperDecoderInf | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 55.096 ms | 16 - 43 MB | FP16 | NPU | [Whisper-Small-En.tflite](https://huggingface.co/qualcomm/Whisper-Small-En/blob/main/WhisperDecoderInf.tflite) |
|
| 54 |
+
| WhisperDecoderInf | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 44.417 ms | 12 - 414 MB | FP16 | NPU | [Whisper-Small-En.tflite](https://huggingface.co/qualcomm/Whisper-Small-En/blob/main/WhisperDecoderInf.tflite) |
|
| 55 |
+
| WhisperDecoderInf | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 41.778 ms | 0 - 254 MB | FP16 | NPU | [Whisper-Small-En.tflite](https://huggingface.co/qualcomm/Whisper-Small-En/blob/main/WhisperDecoderInf.tflite) |
|
| 56 |
+
| WhisperDecoderInf | SA7255P ADP | SA7255P | TFLITE | 119.561 ms | 16 - 268 MB | FP16 | NPU | [Whisper-Small-En.tflite](https://huggingface.co/qualcomm/Whisper-Small-En/blob/main/WhisperDecoderInf.tflite) |
|
| 57 |
+
| WhisperDecoderInf | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 55.398 ms | 16 - 43 MB | FP16 | NPU | [Whisper-Small-En.tflite](https://huggingface.co/qualcomm/Whisper-Small-En/blob/main/WhisperDecoderInf.tflite) |
|
| 58 |
+
| WhisperDecoderInf | SA8295P ADP | SA8295P | TFLITE | 55.947 ms | 16 - 248 MB | FP16 | NPU | [Whisper-Small-En.tflite](https://huggingface.co/qualcomm/Whisper-Small-En/blob/main/WhisperDecoderInf.tflite) |
|
| 59 |
+
| WhisperDecoderInf | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 58.837 ms | 16 - 42 MB | FP16 | NPU | [Whisper-Small-En.tflite](https://huggingface.co/qualcomm/Whisper-Small-En/blob/main/WhisperDecoderInf.tflite) |
|
| 60 |
+
| WhisperDecoderInf | SA8775P ADP | SA8775P | TFLITE | 54.746 ms | 16 - 268 MB | FP16 | NPU | [Whisper-Small-En.tflite](https://huggingface.co/qualcomm/Whisper-Small-En/blob/main/WhisperDecoderInf.tflite) |
|
| 61 |
+
| WhisperDecoderInf | QCS8275 (Proxy) | QCS8275 Proxy | TFLITE | 119.561 ms | 16 - 268 MB | FP16 | NPU | [Whisper-Small-En.tflite](https://huggingface.co/qualcomm/Whisper-Small-En/blob/main/WhisperDecoderInf.tflite) |
|
| 62 |
+
| WhisperDecoderInf | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 54.803 ms | 16 - 40 MB | FP16 | NPU | [Whisper-Small-En.tflite](https://huggingface.co/qualcomm/Whisper-Small-En/blob/main/WhisperDecoderInf.tflite) |
|
| 63 |
+
| WhisperDecoderInf | QCS9075 (Proxy) | QCS9075 Proxy | TFLITE | 54.746 ms | 16 - 268 MB | FP16 | NPU | [Whisper-Small-En.tflite](https://huggingface.co/qualcomm/Whisper-Small-En/blob/main/WhisperDecoderInf.tflite) |
|
| 64 |
+
| WhisperDecoderInf | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 61.519 ms | 16 - 404 MB | FP16 | NPU | [Whisper-Small-En.tflite](https://huggingface.co/qualcomm/Whisper-Small-En/blob/main/WhisperDecoderInf.tflite) |
|
| 65 |
|
| 66 |
|
| 67 |
|
|
|
|
| 122 |
```
|
| 123 |
Profiling Results
|
| 124 |
------------------------------------------------------------
|
| 125 |
+
WhisperEncoderInf
|
| 126 |
+
Device : Samsung Galaxy S23 (13)
|
| 127 |
+
Runtime : TFLITE
|
| 128 |
+
Estimated inference time (ms) : 874.2
|
| 129 |
+
Estimated peak memory usage (MB): [44, 122]
|
| 130 |
+
Total # Ops : 911
|
| 131 |
+
Compute Unit(s) : GPU (900 ops) CPU (11 ops)
|
| 132 |
+
|
| 133 |
+
------------------------------------------------------------
|
| 134 |
+
WhisperDecoderInf
|
| 135 |
Device : Samsung Galaxy S23 (13)
|
| 136 |
Runtime : TFLITE
|
| 137 |
+
Estimated inference time (ms) : 55.1
|
| 138 |
Estimated peak memory usage (MB): [16, 43]
|
| 139 |
Total # Ops : 2573
|
| 140 |
Compute Unit(s) : NPU (2573 ops)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 141 |
```
|
| 142 |
|
| 143 |
|
|
|
|
| 159 |
from qai_hub_models.models.whisper_small_en import Model
|
| 160 |
|
| 161 |
# Load the model
|
| 162 |
+
torch_model = Model.from_pretrained()
|
|
|
|
|
|
|
| 163 |
|
| 164 |
# Device
|
| 165 |
+
device = hub.Device("Samsung Galaxy S24")
|
| 166 |
|
| 167 |
# Trace model
|
| 168 |
+
input_shape = torch_model.get_input_spec()
|
| 169 |
+
sample_inputs = torch_model.sample_inputs()
|
| 170 |
|
| 171 |
+
pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])
|
| 172 |
|
| 173 |
# Compile model on a specific device
|
| 174 |
+
compile_job = hub.submit_compile_job(
|
| 175 |
+
model=pt_model,
|
| 176 |
device=device,
|
| 177 |
+
input_specs=torch_model.get_input_spec(),
|
| 178 |
)
|
| 179 |
|
| 180 |
# Get target model to run on-device
|
| 181 |
+
target_model = compile_job.get_target_model()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 182 |
|
| 183 |
```
|
| 184 |
|
|
|
|
| 190 |
provisioned in the cloud. Once the job is submitted, you can navigate to a
|
| 191 |
provided job URL to view a variety of on-device performance metrics.
|
| 192 |
```python
|
| 193 |
+
profile_job = hub.submit_profile_job(
|
| 194 |
+
model=target_model,
|
|
|
|
|
|
|
|
|
|
|
|
|
| 195 |
device=device,
|
| 196 |
)
|
| 197 |
+
|
| 198 |
```
|
| 199 |
|
| 200 |
Step 3: **Verify on-device accuracy**
|
|
|
|
| 202 |
To verify the accuracy of the model on-device, you can run on-device inference
|
| 203 |
on sample input data on the same cloud hosted device.
|
| 204 |
```python
|
| 205 |
+
input_data = torch_model.sample_inputs()
|
| 206 |
+
inference_job = hub.submit_inference_job(
|
| 207 |
+
model=target_model,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 208 |
device=device,
|
| 209 |
+
inputs=input_data,
|
| 210 |
)
|
| 211 |
+
on_device_output = inference_job.download_output_data()
|
| 212 |
|
| 213 |
```
|
| 214 |
With the output of the model, you can compute like PSNR, relative errors or
|