Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -32,10 +32,13 @@ More details on model performance across various devices, can be found
|
|
32 |
- Model size: 118 MB
|
33 |
|
34 |
|
|
|
|
|
35 |
| Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
36 |
| ---|---|---|---|---|---|---|---|
|
37 |
-
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite |
|
38 |
-
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library |
|
|
|
39 |
|
40 |
|
41 |
## Installation
|
@@ -96,15 +99,17 @@ python -m qai_hub_models.models.unet_segmentation.export
|
|
96 |
Profile Job summary of Unet-Segmentation
|
97 |
--------------------------------------------------
|
98 |
Device: Snapdragon X Elite CRD (11)
|
99 |
-
Estimated Inference Time: 190.
|
100 |
-
Estimated Peak Memory Range: 9.
|
101 |
Compute Units: NPU (51) | Total (51)
|
102 |
|
103 |
|
104 |
```
|
|
|
|
|
105 |
## How does this work?
|
106 |
|
107 |
-
This [export script](https://
|
108 |
leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
|
109 |
on-device. Lets go through each step below in detail:
|
110 |
|
@@ -181,6 +186,7 @@ spot check the output with expected output.
|
|
181 |
AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup).
|
182 |
|
183 |
|
|
|
184 |
## Run demo on a cloud-hosted device
|
185 |
|
186 |
You can also run the demo on-device.
|
@@ -217,7 +223,7 @@ Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
|
|
217 |
## License
|
218 |
- The license for the original implementation of Unet-Segmentation can be found
|
219 |
[here](https://github.com/milesial/Pytorch-UNet/blob/master/LICENSE).
|
220 |
-
- The license for the compiled assets for on-device deployment can be found [here](
|
221 |
|
222 |
## References
|
223 |
* [U-Net: Convolutional Networks for Biomedical Image Segmentation](https://arxiv.org/abs/1505.04597)
|
|
|
32 |
- Model size: 118 MB
|
33 |
|
34 |
|
35 |
+
|
36 |
+
|
37 |
| Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
38 |
| ---|---|---|---|---|---|---|---|
|
39 |
+
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 159.228 ms | 6 - 106 MB | FP16 | NPU | [Unet-Segmentation.tflite](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation.tflite)
|
40 |
+
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 156.519 ms | 9 - 30 MB | FP16 | NPU | [Unet-Segmentation.so](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation.so)
|
41 |
+
|
42 |
|
43 |
|
44 |
## Installation
|
|
|
99 |
Profile Job summary of Unet-Segmentation
|
100 |
--------------------------------------------------
|
101 |
Device: Snapdragon X Elite CRD (11)
|
102 |
+
Estimated Inference Time: 190.48 ms
|
103 |
+
Estimated Peak Memory Range: 9.40-9.40 MB
|
104 |
Compute Units: NPU (51) | Total (51)
|
105 |
|
106 |
|
107 |
```
|
108 |
+
|
109 |
+
|
110 |
## How does this work?
|
111 |
|
112 |
+
This [export script](https://aihub.qualcomm.com/models/unet_segmentation/qai_hub_models/models/Unet-Segmentation/export.py)
|
113 |
leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
|
114 |
on-device. Lets go through each step below in detail:
|
115 |
|
|
|
186 |
AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup).
|
187 |
|
188 |
|
189 |
+
|
190 |
## Run demo on a cloud-hosted device
|
191 |
|
192 |
You can also run the demo on-device.
|
|
|
223 |
## License
|
224 |
- The license for the original implementation of Unet-Segmentation can be found
|
225 |
[here](https://github.com/milesial/Pytorch-UNet/blob/master/LICENSE).
|
226 |
+
- The license for the compiled assets for on-device deployment can be found [here](https://github.com/milesial/Pytorch-UNet/blob/master/LICENSE)
|
227 |
|
228 |
## References
|
229 |
* [U-Net: Convolutional Networks for Biomedical Image Segmentation](https://arxiv.org/abs/1505.04597)
|