qaihm-bot commited on
Commit
801b6fd
·
verified ·
1 Parent(s): f523302

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +4 -5
README.md CHANGED
@@ -36,8 +36,8 @@ More details on model performance across various devices, can be found
36
 
37
  | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
38
  | ---|---|---|---|---|---|---|---|
39
- | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 159.228 ms | 6 - 106 MB | FP16 | NPU | [Unet-Segmentation.tflite](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation.tflite)
40
- | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 156.519 ms | 9 - 30 MB | FP16 | NPU | [Unet-Segmentation.so](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation.so)
41
 
42
 
43
 
@@ -99,8 +99,8 @@ python -m qai_hub_models.models.unet_segmentation.export
99
  Profile Job summary of Unet-Segmentation
100
  --------------------------------------------------
101
  Device: Snapdragon X Elite CRD (11)
102
- Estimated Inference Time: 190.48 ms
103
- Estimated Peak Memory Range: 9.40-9.40 MB
104
  Compute Units: NPU (51) | Total (51)
105
 
106
 
@@ -126,7 +126,6 @@ from qai_hub_models.models.unet_segmentation import Model
126
 
127
  # Load the model
128
  torch_model = Model.from_pretrained()
129
- torch_model.eval()
130
 
131
  # Device
132
  device = hub.Device("Samsung Galaxy S23")
 
36
 
37
  | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
38
  | ---|---|---|---|---|---|---|---|
39
+ | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 160.376 ms | 6 - 442 MB | FP16 | NPU | [Unet-Segmentation.tflite](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation.tflite)
40
+ | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 155.942 ms | 9 - 27 MB | FP16 | NPU | [Unet-Segmentation.so](https://huggingface.co/qualcomm/Unet-Segmentation/blob/main/Unet-Segmentation.so)
41
 
42
 
43
 
 
99
  Profile Job summary of Unet-Segmentation
100
  --------------------------------------------------
101
  Device: Snapdragon X Elite CRD (11)
102
+ Estimated Inference Time: 133.37 ms
103
+ Estimated Peak Memory Range: 9.39-9.39 MB
104
  Compute Units: NPU (51) | Total (51)
105
 
106
 
 
126
 
127
  # Load the model
128
  torch_model = Model.from_pretrained()
 
129
 
130
  # Device
131
  device = hub.Device("Samsung Galaxy S23")