Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -35,32 +35,32 @@ More details on model performance across various devices, can be found
|
|
35 |
|
36 |
| Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
37 |
|---|---|---|---|---|---|---|---|---|
|
38 |
-
| SESR-M5-Quantized | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 1.
|
39 |
-
| SESR-M5-Quantized | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 0.
|
40 |
-
| SESR-M5-Quantized | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX |
|
41 |
-
| SESR-M5-Quantized | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 1.
|
42 |
-
| SESR-M5-Quantized | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 0.
|
43 |
-
| SESR-M5-Quantized | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX |
|
44 |
-
| SESR-M5-Quantized | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 1.
|
45 |
-
| SESR-M5-Quantized | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 0.
|
46 |
-
| SESR-M5-Quantized | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX |
|
47 |
-
| SESR-M5-Quantized | RB3 Gen 2 (Proxy) | QCS6490 Proxy | TFLITE |
|
48 |
-
| SESR-M5-Quantized | RB3 Gen 2 (Proxy) | QCS6490 Proxy | QNN | 3.
|
49 |
-
| SESR-M5-Quantized | RB5 (Proxy) | QCS8250 Proxy | TFLITE |
|
50 |
-
| SESR-M5-Quantized | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 1.
|
51 |
-
| SESR-M5-Quantized | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 0.
|
52 |
-
| SESR-M5-Quantized | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 1.
|
53 |
-
| SESR-M5-Quantized | SA8255 (Proxy) | SA8255P Proxy | QNN | 0.
|
54 |
-
| SESR-M5-Quantized | SA8775 (Proxy) | SA8775P Proxy | TFLITE | 1.
|
55 |
-
| SESR-M5-Quantized | SA8775 (Proxy) | SA8775P Proxy | QNN | 0.
|
56 |
-
| SESR-M5-Quantized | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 1.
|
57 |
-
| SESR-M5-Quantized | SA8650 (Proxy) | SA8650P Proxy | QNN | 0.
|
58 |
-
| SESR-M5-Quantized | SA8295P ADP | SA8295P | TFLITE | 2.
|
59 |
-
| SESR-M5-Quantized | SA8295P ADP | SA8295P | QNN | 1.
|
60 |
-
| SESR-M5-Quantized | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 1.
|
61 |
-
| SESR-M5-Quantized | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 1.
|
62 |
-
| SESR-M5-Quantized | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 0.
|
63 |
-
| SESR-M5-Quantized | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX |
|
64 |
|
65 |
|
66 |
|
@@ -126,12 +126,72 @@ SESR-M5-Quantized
|
|
126 |
Device : Samsung Galaxy S23 (13)
|
127 |
Runtime : TFLITE
|
128 |
Estimated inference time (ms) : 1.4
|
129 |
-
Estimated peak memory usage (MB): [0,
|
130 |
Total # Ops : 27
|
131 |
Compute Unit(s) : NPU (24 ops) CPU (3 ops)
|
132 |
```
|
133 |
|
134 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
|
136 |
|
137 |
## Run demo on a cloud-hosted device
|
|
|
35 |
|
36 |
| Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
37 |
|---|---|---|---|---|---|---|---|---|
|
38 |
+
| SESR-M5-Quantized | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 1.36 ms | 0 - 3 MB | INT8 | NPU | [SESR-M5-Quantized.tflite](https://huggingface.co/qualcomm/SESR-M5-Quantized/blob/main/SESR-M5-Quantized.tflite) |
|
39 |
+
| SESR-M5-Quantized | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 0.977 ms | 0 - 10 MB | INT8 | NPU | [SESR-M5-Quantized.so](https://huggingface.co/qualcomm/SESR-M5-Quantized/blob/main/SESR-M5-Quantized.so) |
|
40 |
+
| SESR-M5-Quantized | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 3.084 ms | 0 - 3 MB | INT8 | NPU | [SESR-M5-Quantized.onnx](https://huggingface.co/qualcomm/SESR-M5-Quantized/blob/main/SESR-M5-Quantized.onnx) |
|
41 |
+
| SESR-M5-Quantized | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 1.12 ms | 0 - 26 MB | INT8 | NPU | [SESR-M5-Quantized.tflite](https://huggingface.co/qualcomm/SESR-M5-Quantized/blob/main/SESR-M5-Quantized.tflite) |
|
42 |
+
| SESR-M5-Quantized | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 0.706 ms | 0 - 12 MB | INT8 | NPU | [SESR-M5-Quantized.so](https://huggingface.co/qualcomm/SESR-M5-Quantized/blob/main/SESR-M5-Quantized.so) |
|
43 |
+
| SESR-M5-Quantized | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 2.217 ms | 0 - 74 MB | INT8 | NPU | [SESR-M5-Quantized.onnx](https://huggingface.co/qualcomm/SESR-M5-Quantized/blob/main/SESR-M5-Quantized.onnx) |
|
44 |
+
| SESR-M5-Quantized | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 1.592 ms | 0 - 18 MB | INT8 | NPU | [SESR-M5-Quantized.tflite](https://huggingface.co/qualcomm/SESR-M5-Quantized/blob/main/SESR-M5-Quantized.tflite) |
|
45 |
+
| SESR-M5-Quantized | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 0.728 ms | 0 - 12 MB | INT8 | NPU | Use Export Script |
|
46 |
+
| SESR-M5-Quantized | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 2.049 ms | 0 - 57 MB | INT8 | NPU | [SESR-M5-Quantized.onnx](https://huggingface.co/qualcomm/SESR-M5-Quantized/blob/main/SESR-M5-Quantized.onnx) |
|
47 |
+
| SESR-M5-Quantized | RB3 Gen 2 (Proxy) | QCS6490 Proxy | TFLITE | 3.602 ms | 2 - 20 MB | INT8 | NPU | [SESR-M5-Quantized.tflite](https://huggingface.co/qualcomm/SESR-M5-Quantized/blob/main/SESR-M5-Quantized.tflite) |
|
48 |
+
| SESR-M5-Quantized | RB3 Gen 2 (Proxy) | QCS6490 Proxy | QNN | 3.106 ms | 0 - 8 MB | INT8 | NPU | Use Export Script |
|
49 |
+
| SESR-M5-Quantized | RB5 (Proxy) | QCS8250 Proxy | TFLITE | 21.818 ms | 1 - 4 MB | INT8 | NPU | [SESR-M5-Quantized.tflite](https://huggingface.co/qualcomm/SESR-M5-Quantized/blob/main/SESR-M5-Quantized.tflite) |
|
50 |
+
| SESR-M5-Quantized | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 1.334 ms | 0 - 1 MB | INT8 | NPU | [SESR-M5-Quantized.tflite](https://huggingface.co/qualcomm/SESR-M5-Quantized/blob/main/SESR-M5-Quantized.tflite) |
|
51 |
+
| SESR-M5-Quantized | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 0.689 ms | 0 - 2 MB | INT8 | NPU | Use Export Script |
|
52 |
+
| SESR-M5-Quantized | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 1.35 ms | 0 - 74 MB | INT8 | NPU | [SESR-M5-Quantized.tflite](https://huggingface.co/qualcomm/SESR-M5-Quantized/blob/main/SESR-M5-Quantized.tflite) |
|
53 |
+
| SESR-M5-Quantized | SA8255 (Proxy) | SA8255P Proxy | QNN | 0.692 ms | 0 - 1 MB | INT8 | NPU | Use Export Script |
|
54 |
+
| SESR-M5-Quantized | SA8775 (Proxy) | SA8775P Proxy | TFLITE | 1.329 ms | 0 - 2 MB | INT8 | NPU | [SESR-M5-Quantized.tflite](https://huggingface.co/qualcomm/SESR-M5-Quantized/blob/main/SESR-M5-Quantized.tflite) |
|
55 |
+
| SESR-M5-Quantized | SA8775 (Proxy) | SA8775P Proxy | QNN | 0.692 ms | 0 - 1 MB | INT8 | NPU | Use Export Script |
|
56 |
+
| SESR-M5-Quantized | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 1.362 ms | 0 - 1 MB | INT8 | NPU | [SESR-M5-Quantized.tflite](https://huggingface.co/qualcomm/SESR-M5-Quantized/blob/main/SESR-M5-Quantized.tflite) |
|
57 |
+
| SESR-M5-Quantized | SA8650 (Proxy) | SA8650P Proxy | QNN | 0.696 ms | 0 - 2 MB | INT8 | NPU | Use Export Script |
|
58 |
+
| SESR-M5-Quantized | SA8295P ADP | SA8295P | TFLITE | 2.612 ms | 2 - 19 MB | INT8 | NPU | [SESR-M5-Quantized.tflite](https://huggingface.co/qualcomm/SESR-M5-Quantized/blob/main/SESR-M5-Quantized.tflite) |
|
59 |
+
| SESR-M5-Quantized | SA8295P ADP | SA8295P | QNN | 1.545 ms | 0 - 6 MB | INT8 | NPU | Use Export Script |
|
60 |
+
| SESR-M5-Quantized | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 1.73 ms | 0 - 26 MB | INT8 | NPU | [SESR-M5-Quantized.tflite](https://huggingface.co/qualcomm/SESR-M5-Quantized/blob/main/SESR-M5-Quantized.tflite) |
|
61 |
+
| SESR-M5-Quantized | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 1.125 ms | 0 - 16 MB | INT8 | NPU | Use Export Script |
|
62 |
+
| SESR-M5-Quantized | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 0.829 ms | 0 - 0 MB | INT8 | NPU | Use Export Script |
|
63 |
+
| SESR-M5-Quantized | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 3.574 ms | 2 - 2 MB | INT8 | NPU | [SESR-M5-Quantized.onnx](https://huggingface.co/qualcomm/SESR-M5-Quantized/blob/main/SESR-M5-Quantized.onnx) |
|
64 |
|
65 |
|
66 |
|
|
|
126 |
Device : Samsung Galaxy S23 (13)
|
127 |
Runtime : TFLITE
|
128 |
Estimated inference time (ms) : 1.4
|
129 |
+
Estimated peak memory usage (MB): [0, 3]
|
130 |
Total # Ops : 27
|
131 |
Compute Unit(s) : NPU (24 ops) CPU (3 ops)
|
132 |
```
|
133 |
|
134 |
|
135 |
+
## How does this work?
|
136 |
+
|
137 |
+
This [export script](https://aihub.qualcomm.com/models/sesr_m5_quantized/qai_hub_models/models/SESR-M5-Quantized/export.py)
|
138 |
+
leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
|
139 |
+
on-device. Lets go through each step below in detail:
|
140 |
+
|
141 |
+
Step 1: **Compile model for on-device deployment**
|
142 |
+
|
143 |
+
To compile a PyTorch model for on-device deployment, we first trace the model
|
144 |
+
in memory using the `jit.trace` and then call the `submit_compile_job` API.
|
145 |
+
|
146 |
+
```python
|
147 |
+
import torch
|
148 |
+
|
149 |
+
import qai_hub as hub
|
150 |
+
from qai_hub_models.models.sesr_m5_quantized import
|
151 |
+
|
152 |
+
# Load the model
|
153 |
+
|
154 |
+
# Device
|
155 |
+
device = hub.Device("Samsung Galaxy S23")
|
156 |
+
|
157 |
+
|
158 |
+
```
|
159 |
+
|
160 |
+
|
161 |
+
Step 2: **Performance profiling on cloud-hosted device**
|
162 |
+
|
163 |
+
After compiling models from step 1. Models can be profiled model on-device using the
|
164 |
+
`target_model`. Note that this scripts runs the model on a device automatically
|
165 |
+
provisioned in the cloud. Once the job is submitted, you can navigate to a
|
166 |
+
provided job URL to view a variety of on-device performance metrics.
|
167 |
+
```python
|
168 |
+
profile_job = hub.submit_profile_job(
|
169 |
+
model=target_model,
|
170 |
+
device=device,
|
171 |
+
)
|
172 |
+
|
173 |
+
```
|
174 |
+
|
175 |
+
Step 3: **Verify on-device accuracy**
|
176 |
+
|
177 |
+
To verify the accuracy of the model on-device, you can run on-device inference
|
178 |
+
on sample input data on the same cloud hosted device.
|
179 |
+
```python
|
180 |
+
input_data = torch_model.sample_inputs()
|
181 |
+
inference_job = hub.submit_inference_job(
|
182 |
+
model=target_model,
|
183 |
+
device=device,
|
184 |
+
inputs=input_data,
|
185 |
+
)
|
186 |
+
on_device_output = inference_job.download_output_data()
|
187 |
+
|
188 |
+
```
|
189 |
+
With the output of the model, you can compute like PSNR, relative errors or
|
190 |
+
spot check the output with expected output.
|
191 |
+
|
192 |
+
**Note**: This on-device profiling and inference requires access to Qualcomm®
|
193 |
+
AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup).
|
194 |
+
|
195 |
|
196 |
|
197 |
## Run demo on a cloud-hosted device
|