Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -2,7 +2,7 @@
|
|
2 |
datasets:
|
3 |
- coco
|
4 |
library_name: pytorch
|
5 |
-
license:
|
6 |
pipeline_tag: image-classification
|
7 |
tags:
|
8 |
- android
|
@@ -27,15 +27,18 @@ More details on model performance across various devices, can be found
|
|
27 |
- **Model Type:** Pose estimation
|
28 |
- **Model Stats:**
|
29 |
- Model checkpoint: mobilenet_v1_101
|
30 |
-
- Input resolution:
|
31 |
- Number of parameters: 3.31M
|
32 |
- Model size: 12.7 MB
|
33 |
|
34 |
|
|
|
|
|
35 |
| Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
36 |
| ---|---|---|---|---|---|---|---|
|
37 |
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 1.387 ms | 0 - 2 MB | FP16 | NPU | [Posenet-Mobilenet.tflite](https://huggingface.co/qualcomm/Posenet-Mobilenet/blob/main/Posenet-Mobilenet.tflite)
|
38 |
-
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 1.
|
|
|
39 |
|
40 |
|
41 |
## Installation
|
@@ -102,9 +105,11 @@ Compute Units: NPU (69) | Total (69)
|
|
102 |
|
103 |
|
104 |
```
|
|
|
|
|
105 |
## How does this work?
|
106 |
|
107 |
-
This [export script](https://
|
108 |
leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
|
109 |
on-device. Lets go through each step below in detail:
|
110 |
|
@@ -181,6 +186,7 @@ spot check the output with expected output.
|
|
181 |
AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup).
|
182 |
|
183 |
|
|
|
184 |
## Run demo on a cloud-hosted device
|
185 |
|
186 |
You can also run the demo on-device.
|
@@ -217,7 +223,7 @@ Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
|
|
217 |
## License
|
218 |
- The license for the original implementation of Posenet-Mobilenet can be found
|
219 |
[here](https://github.com/rwightman/posenet-pytorch/blob/master/LICENSE.txt).
|
220 |
-
- The license for the compiled assets for on-device deployment can be found [here](
|
221 |
|
222 |
## References
|
223 |
* [PersonLab: Person Pose Estimation and Instance Segmentation with a Bottom-Up, Part-Based, Geometric Embedding Model](https://arxiv.org/abs/1803.08225)
|
|
|
2 |
datasets:
|
3 |
- coco
|
4 |
library_name: pytorch
|
5 |
+
license: apache-2.0
|
6 |
pipeline_tag: image-classification
|
7 |
tags:
|
8 |
- android
|
|
|
27 |
- **Model Type:** Pose estimation
|
28 |
- **Model Stats:**
|
29 |
- Model checkpoint: mobilenet_v1_101
|
30 |
+
- Input resolution: 513x257
|
31 |
- Number of parameters: 3.31M
|
32 |
- Model size: 12.7 MB
|
33 |
|
34 |
|
35 |
+
|
36 |
+
|
37 |
| Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
38 |
| ---|---|---|---|---|---|---|---|
|
39 |
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 1.387 ms | 0 - 2 MB | FP16 | NPU | [Posenet-Mobilenet.tflite](https://huggingface.co/qualcomm/Posenet-Mobilenet/blob/main/Posenet-Mobilenet.tflite)
|
40 |
+
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 1.439 ms | 0 - 23 MB | FP16 | NPU | [Posenet-Mobilenet.so](https://huggingface.co/qualcomm/Posenet-Mobilenet/blob/main/Posenet-Mobilenet.so)
|
41 |
+
|
42 |
|
43 |
|
44 |
## Installation
|
|
|
105 |
|
106 |
|
107 |
```
|
108 |
+
|
109 |
+
|
110 |
## How does this work?
|
111 |
|
112 |
+
This [export script](https://aihub.qualcomm.com/models/posenet_mobilenet/qai_hub_models/models/Posenet-Mobilenet/export.py)
|
113 |
leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
|
114 |
on-device. Lets go through each step below in detail:
|
115 |
|
|
|
186 |
AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup).
|
187 |
|
188 |
|
189 |
+
|
190 |
## Run demo on a cloud-hosted device
|
191 |
|
192 |
You can also run the demo on-device.
|
|
|
223 |
## License
|
224 |
- The license for the original implementation of Posenet-Mobilenet can be found
|
225 |
[here](https://github.com/rwightman/posenet-pytorch/blob/master/LICENSE.txt).
|
226 |
+
- The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
|
227 |
|
228 |
## References
|
229 |
* [PersonLab: Person Pose Estimation and Instance Segmentation with a Bottom-Up, Part-Based, Geometric Embedding Model](https://arxiv.org/abs/1803.08225)
|