qaihm-bot commited on
Commit
8a01b87
·
verified ·
1 Parent(s): 2fd03ae

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +4 -35
README.md CHANGED
@@ -34,10 +34,10 @@ More details on model performance across various devices, can be found
34
 
35
  | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
36
  | ---|---|---|---|---|---|---|---|
37
- | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 0.832 ms | 0 - 5 MB | FP16 | NPU | [MediaPipePoseDetector.tflite](https://huggingface.co/qualcomm/MediaPipe-Pose-Estimation/blob/main/MediaPipePoseDetector.tflite)
38
- | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 1.234 ms | 0 - 2 MB | FP16 | NPU | [MediaPipePoseLandmarkDetector.tflite](https://huggingface.co/qualcomm/MediaPipe-Pose-Estimation/blob/main/MediaPipePoseLandmarkDetector.tflite)
39
- | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 0.888 ms | 0 - 15 MB | FP16 | NPU | [MediaPipePoseDetector.so](https://huggingface.co/qualcomm/MediaPipe-Pose-Estimation/blob/main/MediaPipePoseDetector.so)
40
- | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 1.299 ms | 0 - 15 MB | FP16 | NPU | [MediaPipePoseLandmarkDetector.so](https://huggingface.co/qualcomm/MediaPipe-Pose-Estimation/blob/main/MediaPipePoseLandmarkDetector.so)
41
 
42
 
43
  ## Installation
@@ -94,37 +94,6 @@ device. This script does the following:
94
  python -m qai_hub_models.models.mediapipe_pose.export
95
  ```
96
 
97
- ```
98
- Profile Job summary of MediaPipePoseDetector
99
- --------------------------------------------------
100
- Device: Samsung Galaxy S24 (14)
101
- Estimated Inference Time: 0.59 ms
102
- Estimated Peak Memory Range: 0.06-38.15 MB
103
- Compute Units: NPU (107) | Total (107)
104
-
105
- Profile Job summary of MediaPipePoseLandmarkDetector
106
- --------------------------------------------------
107
- Device: Samsung Galaxy S24 (14)
108
- Estimated Inference Time: 0.90 ms
109
- Estimated Peak Memory Range: 0.02-83.68 MB
110
- Compute Units: NPU (230) | Total (230)
111
-
112
- Profile Job summary of MediaPipePoseDetector
113
- --------------------------------------------------
114
- Device: Samsung Galaxy S24 (14)
115
- Estimated Inference Time: 0.64 ms
116
- Estimated Peak Memory Range: 0.00-40.35 MB
117
- Compute Units: NPU (140) | Total (140)
118
-
119
- Profile Job summary of MediaPipePoseLandmarkDetector
120
- --------------------------------------------------
121
- Device: Samsung Galaxy S24 (14)
122
- Estimated Inference Time: 0.94 ms
123
- Estimated Peak Memory Range: 0.78-83.14 MB
124
- Compute Units: NPU (306) | Total (306)
125
-
126
-
127
- ```
128
  ## How does this work?
129
 
130
  This [export script](https://github.com/quic/ai-hub-models/blob/main/qai_hub_models/models/MediaPipe-Pose-Estimation/export.py)
 
34
 
35
  | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
36
  | ---|---|---|---|---|---|---|---|
37
+ | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 0.835 ms | 0 - 2 MB | FP16 | NPU | [MediaPipePoseDetector.tflite](https://huggingface.co/qualcomm/MediaPipe-Pose-Estimation/blob/main/MediaPipePoseDetector.tflite)
38
+ | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 1.206 ms | 0 - 2 MB | FP16 | NPU | [MediaPipePoseLandmarkDetector.tflite](https://huggingface.co/qualcomm/MediaPipe-Pose-Estimation/blob/main/MediaPipePoseLandmarkDetector.tflite)
39
+ | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 0.884 ms | 0 - 15 MB | FP16 | NPU | [MediaPipePoseDetector.so](https://huggingface.co/qualcomm/MediaPipe-Pose-Estimation/blob/main/MediaPipePoseDetector.so)
40
+ | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 1.297 ms | 0 - 15 MB | FP16 | NPU | [MediaPipePoseLandmarkDetector.so](https://huggingface.co/qualcomm/MediaPipe-Pose-Estimation/blob/main/MediaPipePoseLandmarkDetector.so)
41
 
42
 
43
  ## Installation
 
94
  python -m qai_hub_models.models.mediapipe_pose.export
95
  ```
96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97
  ## How does this work?
98
 
99
  This [export script](https://github.com/quic/ai-hub-models/blob/main/qai_hub_models/models/MediaPipe-Pose-Estimation/export.py)