Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -15,7 +15,7 @@ tags:
|
|
15 |
|
16 |
The MediaPipe Pose Landmark Detector is a machine learning pipeline that predicts bounding boxes and pose skeletons of poses in an image.
|
17 |
|
18 |
-
This model is an implementation of MediaPipe-Pose-Estimation found [here](
|
19 |
This repository provides scripts to run MediaPipe-Pose-Estimation on Qualcomm® devices.
|
20 |
More details on model performance across various devices, can be found
|
21 |
[here](https://aihub.qualcomm.com/models/mediapipe_pose).
|
@@ -31,17 +31,35 @@ More details on model performance across various devices, can be found
|
|
31 |
- Number of parameters (MediaPipePoseLandmarkDetector): 3.37M
|
32 |
- Model size (MediaPipePoseLandmarkDetector): 12.9 MB
|
33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
|
36 |
|
37 |
-
| Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
38 |
-
| ---|---|---|---|---|---|---|---|
|
39 |
-
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 0.774 ms | 0 - 2 MB | FP16 | NPU | [MediaPipePoseDetector.tflite](https://huggingface.co/qualcomm/MediaPipe-Pose-Estimation/blob/main/MediaPipePoseDetector.tflite)
|
40 |
-
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 0.832 ms | 0 - 2 MB | FP16 | NPU | [MediaPipePoseLandmarkDetector.tflite](https://huggingface.co/qualcomm/MediaPipe-Pose-Estimation/blob/main/MediaPipePoseLandmarkDetector.tflite)
|
41 |
-
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 0.838 ms | 0 - 6 MB | FP16 | NPU | [MediaPipePoseDetector.so](https://huggingface.co/qualcomm/MediaPipe-Pose-Estimation/blob/main/MediaPipePoseDetector.so)
|
42 |
-
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 0.915 ms | 0 - 38 MB | FP16 | NPU | [MediaPipePoseLandmarkDetector.so](https://huggingface.co/qualcomm/MediaPipe-Pose-Estimation/blob/main/MediaPipePoseLandmarkDetector.so)
|
43 |
-
|
44 |
-
|
45 |
|
46 |
## Installation
|
47 |
|
@@ -96,23 +114,25 @@ device. This script does the following:
|
|
96 |
```bash
|
97 |
python -m qai_hub_models.models.mediapipe_pose.export
|
98 |
```
|
99 |
-
|
100 |
```
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
|
|
|
|
|
|
116 |
```
|
117 |
|
118 |
|
@@ -240,15 +260,19 @@ provides instructions on how to use the `.so` shared library in an Android appl
|
|
240 |
Get more details on MediaPipe-Pose-Estimation's performance across various devices [here](https://aihub.qualcomm.com/models/mediapipe_pose).
|
241 |
Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
|
242 |
|
|
|
243 |
## License
|
244 |
-
|
245 |
-
|
246 |
-
|
|
|
247 |
|
248 |
## References
|
249 |
* [BlazePose: On-device Real-time Body Pose tracking](https://arxiv.org/abs/2006.10204)
|
250 |
* [Source Model Implementation](https://github.com/zmurez/MediaPipePyTorch/)
|
251 |
|
|
|
|
|
252 |
## Community
|
253 |
* Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
|
254 |
* For questions or feedback please [reach out to us](mailto:ai-hub-support@qti.qualcomm.com).
|
|
|
15 |
|
16 |
The MediaPipe Pose Landmark Detector is a machine learning pipeline that predicts bounding boxes and pose skeletons of poses in an image.
|
17 |
|
18 |
+
This model is an implementation of MediaPipe-Pose-Estimation found [here]({source_repo}).
|
19 |
This repository provides scripts to run MediaPipe-Pose-Estimation on Qualcomm® devices.
|
20 |
More details on model performance across various devices, can be found
|
21 |
[here](https://aihub.qualcomm.com/models/mediapipe_pose).
|
|
|
31 |
- Number of parameters (MediaPipePoseLandmarkDetector): 3.37M
|
32 |
- Model size (MediaPipePoseLandmarkDetector): 12.9 MB
|
33 |
|
34 |
+
| Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
35 |
+
|---|---|---|---|---|---|---|---|---|
|
36 |
+
| MediaPipePoseDetector | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 0.774 ms | 0 - 5 MB | FP16 | NPU | [MediaPipe-Pose-Estimation.tflite](https://huggingface.co/qualcomm/MediaPipe-Pose-Estimation/blob/main/MediaPipePoseDetector.tflite) |
|
37 |
+
| MediaPipePoseDetector | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 1.009 ms | 0 - 4 MB | FP16 | NPU | [MediaPipe-Pose-Estimation.onnx](https://huggingface.co/qualcomm/MediaPipe-Pose-Estimation/blob/main/MediaPipePoseDetector.onnx) |
|
38 |
+
| MediaPipePoseDetector | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 0.669 ms | 0 - 47 MB | FP16 | NPU | [MediaPipe-Pose-Estimation.tflite](https://huggingface.co/qualcomm/MediaPipe-Pose-Estimation/blob/main/MediaPipePoseDetector.tflite) |
|
39 |
+
| MediaPipePoseDetector | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 0.898 ms | 0 - 50 MB | FP16 | NPU | [MediaPipe-Pose-Estimation.onnx](https://huggingface.co/qualcomm/MediaPipe-Pose-Estimation/blob/main/MediaPipePoseDetector.onnx) |
|
40 |
+
| MediaPipePoseDetector | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 0.774 ms | 0 - 1 MB | FP16 | NPU | [MediaPipe-Pose-Estimation.tflite](https://huggingface.co/qualcomm/MediaPipe-Pose-Estimation/blob/main/MediaPipePoseDetector.tflite) |
|
41 |
+
| MediaPipePoseDetector | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 0.777 ms | 0 - 1 MB | FP16 | NPU | [MediaPipe-Pose-Estimation.tflite](https://huggingface.co/qualcomm/MediaPipe-Pose-Estimation/blob/main/MediaPipePoseDetector.tflite) |
|
42 |
+
| MediaPipePoseDetector | SA8775 (Proxy) | SA8775P Proxy | TFLITE | 0.779 ms | 0 - 1 MB | FP16 | NPU | [MediaPipe-Pose-Estimation.tflite](https://huggingface.co/qualcomm/MediaPipe-Pose-Estimation/blob/main/MediaPipePoseDetector.tflite) |
|
43 |
+
| MediaPipePoseDetector | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 0.774 ms | 0 - 2 MB | FP16 | NPU | [MediaPipe-Pose-Estimation.tflite](https://huggingface.co/qualcomm/MediaPipe-Pose-Estimation/blob/main/MediaPipePoseDetector.tflite) |
|
44 |
+
| MediaPipePoseDetector | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 1.892 ms | 0 - 42 MB | FP16 | NPU | [MediaPipe-Pose-Estimation.tflite](https://huggingface.co/qualcomm/MediaPipe-Pose-Estimation/blob/main/MediaPipePoseDetector.tflite) |
|
45 |
+
| MediaPipePoseDetector | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 0.457 ms | 0 - 24 MB | FP16 | NPU | [MediaPipe-Pose-Estimation.tflite](https://huggingface.co/qualcomm/MediaPipe-Pose-Estimation/blob/main/MediaPipePoseDetector.tflite) |
|
46 |
+
| MediaPipePoseDetector | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 0.755 ms | 0 - 26 MB | FP16 | NPU | [MediaPipe-Pose-Estimation.onnx](https://huggingface.co/qualcomm/MediaPipe-Pose-Estimation/blob/main/MediaPipePoseDetector.onnx) |
|
47 |
+
| MediaPipePoseDetector | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 1.057 ms | 3 - 3 MB | FP16 | NPU | [MediaPipe-Pose-Estimation.onnx](https://huggingface.co/qualcomm/MediaPipe-Pose-Estimation/blob/main/MediaPipePoseDetector.onnx) |
|
48 |
+
| MediaPipePoseLandmarkDetector | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 0.831 ms | 0 - 6 MB | FP16 | NPU | [MediaPipe-Pose-Estimation.tflite](https://huggingface.co/qualcomm/MediaPipe-Pose-Estimation/blob/main/MediaPipePoseLandmarkDetector.tflite) |
|
49 |
+
| MediaPipePoseLandmarkDetector | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 1.315 ms | 0 - 9 MB | FP16 | NPU | [MediaPipe-Pose-Estimation.onnx](https://huggingface.co/qualcomm/MediaPipe-Pose-Estimation/blob/main/MediaPipePoseLandmarkDetector.onnx) |
|
50 |
+
| MediaPipePoseLandmarkDetector | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 0.705 ms | 0 - 90 MB | FP16 | NPU | [MediaPipe-Pose-Estimation.tflite](https://huggingface.co/qualcomm/MediaPipe-Pose-Estimation/blob/main/MediaPipePoseLandmarkDetector.tflite) |
|
51 |
+
| MediaPipePoseLandmarkDetector | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 1.012 ms | 0 - 96 MB | FP16 | NPU | [MediaPipe-Pose-Estimation.onnx](https://huggingface.co/qualcomm/MediaPipe-Pose-Estimation/blob/main/MediaPipePoseLandmarkDetector.onnx) |
|
52 |
+
| MediaPipePoseLandmarkDetector | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 0.818 ms | 0 - 1 MB | FP16 | NPU | [MediaPipe-Pose-Estimation.tflite](https://huggingface.co/qualcomm/MediaPipe-Pose-Estimation/blob/main/MediaPipePoseLandmarkDetector.tflite) |
|
53 |
+
| MediaPipePoseLandmarkDetector | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 0.841 ms | 0 - 8 MB | FP16 | NPU | [MediaPipe-Pose-Estimation.tflite](https://huggingface.co/qualcomm/MediaPipe-Pose-Estimation/blob/main/MediaPipePoseLandmarkDetector.tflite) |
|
54 |
+
| MediaPipePoseLandmarkDetector | SA8775 (Proxy) | SA8775P Proxy | TFLITE | 0.826 ms | 0 - 2 MB | FP16 | NPU | [MediaPipe-Pose-Estimation.tflite](https://huggingface.co/qualcomm/MediaPipe-Pose-Estimation/blob/main/MediaPipePoseLandmarkDetector.tflite) |
|
55 |
+
| MediaPipePoseLandmarkDetector | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 0.846 ms | 0 - 5 MB | FP16 | NPU | [MediaPipe-Pose-Estimation.tflite](https://huggingface.co/qualcomm/MediaPipe-Pose-Estimation/blob/main/MediaPipePoseLandmarkDetector.tflite) |
|
56 |
+
| MediaPipePoseLandmarkDetector | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 1.814 ms | 0 - 79 MB | FP16 | NPU | [MediaPipe-Pose-Estimation.tflite](https://huggingface.co/qualcomm/MediaPipe-Pose-Estimation/blob/main/MediaPipePoseLandmarkDetector.tflite) |
|
57 |
+
| MediaPipePoseLandmarkDetector | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 0.549 ms | 0 - 35 MB | FP16 | NPU | [MediaPipe-Pose-Estimation.tflite](https://huggingface.co/qualcomm/MediaPipe-Pose-Estimation/blob/main/MediaPipePoseLandmarkDetector.tflite) |
|
58 |
+
| MediaPipePoseLandmarkDetector | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 0.916 ms | 0 - 43 MB | FP16 | NPU | [MediaPipe-Pose-Estimation.onnx](https://huggingface.co/qualcomm/MediaPipe-Pose-Estimation/blob/main/MediaPipePoseLandmarkDetector.onnx) |
|
59 |
+
| MediaPipePoseLandmarkDetector | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 1.382 ms | 8 - 8 MB | FP16 | NPU | [MediaPipe-Pose-Estimation.onnx](https://huggingface.co/qualcomm/MediaPipe-Pose-Estimation/blob/main/MediaPipePoseLandmarkDetector.onnx) |
|
60 |
|
61 |
|
62 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
## Installation
|
65 |
|
|
|
114 |
```bash
|
115 |
python -m qai_hub_models.models.mediapipe_pose.export
|
116 |
```
|
|
|
117 |
```
|
118 |
+
Profiling Results
|
119 |
+
------------------------------------------------------------
|
120 |
+
MediaPipePoseDetector
|
121 |
+
Device : Samsung Galaxy S23 (13)
|
122 |
+
Runtime : TFLITE
|
123 |
+
Estimated inference time (ms) : 0.8
|
124 |
+
Estimated peak memory usage (MB): [0, 5]
|
125 |
+
Total # Ops : 106
|
126 |
+
Compute Unit(s) : NPU (106 ops)
|
127 |
+
|
128 |
+
------------------------------------------------------------
|
129 |
+
MediaPipePoseLandmarkDetector
|
130 |
+
Device : Samsung Galaxy S23 (13)
|
131 |
+
Runtime : TFLITE
|
132 |
+
Estimated inference time (ms) : 0.8
|
133 |
+
Estimated peak memory usage (MB): [0, 6]
|
134 |
+
Total # Ops : 219
|
135 |
+
Compute Unit(s) : NPU (219 ops)
|
136 |
```
|
137 |
|
138 |
|
|
|
260 |
Get more details on MediaPipe-Pose-Estimation's performance across various devices [here](https://aihub.qualcomm.com/models/mediapipe_pose).
|
261 |
Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
|
262 |
|
263 |
+
|
264 |
## License
|
265 |
+
* The license for the original implementation of MediaPipe-Pose-Estimation can be found [here](https://github.com/zmurez/MediaPipePyTorch/blob/master/LICENSE).
|
266 |
+
* The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
|
267 |
+
|
268 |
+
|
269 |
|
270 |
## References
|
271 |
* [BlazePose: On-device Real-time Body Pose tracking](https://arxiv.org/abs/2006.10204)
|
272 |
* [Source Model Implementation](https://github.com/zmurez/MediaPipePyTorch/)
|
273 |
|
274 |
+
|
275 |
+
|
276 |
## Community
|
277 |
* Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
|
278 |
* For questions or feedback please [reach out to us](mailto:ai-hub-support@qti.qualcomm.com).
|