qaihm-bot commited on
Commit
6779b96
1 Parent(s): b22365d

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +31 -18
README.md CHANGED
@@ -14,7 +14,7 @@ tags:
14
 
15
  LiteHRNet is a machine learning model that detects human pose and returns a location and confidence for each of 17 joints.
16
 
17
- This model is an implementation of LiteHRNet found [here](https://github.com/HRNet/Lite-HRNet).
18
  This repository provides scripts to run LiteHRNet on Qualcomm® devices.
19
  More details on model performance across various devices, can be found
20
  [here](https://aihub.qualcomm.com/models/litehrnet).
@@ -28,14 +28,23 @@ More details on model performance across various devices, can be found
28
  - Number of parameters: 1.11M
29
  - Model size: 4.56 MB
30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31
 
32
 
33
 
34
- | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
35
- | ---|---|---|---|---|---|---|---|
36
- | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 7.904 ms | 0 - 4 MB | FP16 | NPU | [LiteHRNet.tflite](https://huggingface.co/qualcomm/LiteHRNet/blob/main/LiteHRNet.tflite)
37
-
38
-
39
 
40
  ## Installation
41
 
@@ -91,16 +100,16 @@ device. This script does the following:
91
  ```bash
92
  python -m qai_hub_models.models.litehrnet.export
93
  ```
94
-
95
  ```
96
- Profile Job summary of LiteHRNet
97
- --------------------------------------------------
98
- Device: SA8255 (Proxy) (13)
99
- Estimated Inference Time: 7.90 ms
100
- Estimated Peak Memory Range: 0.25-2.38 MB
101
- Compute Units: NPU (1233),CPU (2) | Total (1235)
102
-
103
-
 
104
  ```
105
 
106
 
@@ -199,15 +208,19 @@ provides instructions on how to use the `.so` shared library in an Android appl
199
  Get more details on LiteHRNet's performance across various devices [here](https://aihub.qualcomm.com/models/litehrnet).
200
  Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
201
 
 
202
  ## License
203
- - The license for the original implementation of LiteHRNet can be found
204
- [here](https://github.com/HRNet/Lite-HRNet/blob/hrnet/LICENSE).
205
- - The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
 
206
 
207
  ## References
208
  * [Lite-HRNet: A Lightweight High-Resolution Network](https://arxiv.org/abs/2104.06403)
209
  * [Source Model Implementation](https://github.com/HRNet/Lite-HRNet)
210
 
 
 
211
  ## Community
212
  * Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
213
  * For questions or feedback please [reach out to us](mailto:ai-hub-support@qti.qualcomm.com).
 
14
 
15
  LiteHRNet is a machine learning model that detects human pose and returns a location and confidence for each of 17 joints.
16
 
17
+ This model is an implementation of LiteHRNet found [here]({source_repo}).
18
  This repository provides scripts to run LiteHRNet on Qualcomm® devices.
19
  More details on model performance across various devices, can be found
20
  [here](https://aihub.qualcomm.com/models/litehrnet).
 
28
  - Number of parameters: 1.11M
29
  - Model size: 4.56 MB
30
 
31
+ | Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
32
+ |---|---|---|---|---|---|---|---|---|
33
+ | LiteHRNet | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 7.959 ms | 0 - 3 MB | FP16 | NPU | [LiteHRNet.tflite](https://huggingface.co/qualcomm/LiteHRNet/blob/main/LiteHRNet.tflite) |
34
+ | LiteHRNet | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 7.13 ms | 0 - 7 MB | FP16 | NPU | [LiteHRNet.onnx](https://huggingface.co/qualcomm/LiteHRNet/blob/main/LiteHRNet.onnx) |
35
+ | LiteHRNet | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 4.91 ms | 0 - 95 MB | FP16 | NPU | [LiteHRNet.tflite](https://huggingface.co/qualcomm/LiteHRNet/blob/main/LiteHRNet.tflite) |
36
+ | LiteHRNet | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 4.533 ms | 1 - 107 MB | FP16 | NPU | [LiteHRNet.onnx](https://huggingface.co/qualcomm/LiteHRNet/blob/main/LiteHRNet.onnx) |
37
+ | LiteHRNet | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 7.938 ms | 0 - 2 MB | FP16 | NPU | [LiteHRNet.tflite](https://huggingface.co/qualcomm/LiteHRNet/blob/main/LiteHRNet.tflite) |
38
+ | LiteHRNet | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 7.965 ms | 0 - 3 MB | FP16 | NPU | [LiteHRNet.tflite](https://huggingface.co/qualcomm/LiteHRNet/blob/main/LiteHRNet.tflite) |
39
+ | LiteHRNet | SA8775 (Proxy) | SA8775P Proxy | TFLITE | 7.929 ms | 0 - 2 MB | FP16 | NPU | [LiteHRNet.tflite](https://huggingface.co/qualcomm/LiteHRNet/blob/main/LiteHRNet.tflite) |
40
+ | LiteHRNet | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 7.934 ms | 0 - 3 MB | FP16 | NPU | [LiteHRNet.tflite](https://huggingface.co/qualcomm/LiteHRNet/blob/main/LiteHRNet.tflite) |
41
+ | LiteHRNet | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 8.522 ms | 0 - 84 MB | FP16 | NPU | [LiteHRNet.tflite](https://huggingface.co/qualcomm/LiteHRNet/blob/main/LiteHRNet.tflite) |
42
+ | LiteHRNet | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 5.295 ms | 0 - 68 MB | FP16 | NPU | [LiteHRNet.tflite](https://huggingface.co/qualcomm/LiteHRNet/blob/main/LiteHRNet.tflite) |
43
+ | LiteHRNet | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 4.83 ms | 1 - 80 MB | FP16 | NPU | [LiteHRNet.onnx](https://huggingface.co/qualcomm/LiteHRNet/blob/main/LiteHRNet.onnx) |
44
+ | LiteHRNet | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 8.063 ms | 4 - 4 MB | FP16 | NPU | [LiteHRNet.onnx](https://huggingface.co/qualcomm/LiteHRNet/blob/main/LiteHRNet.onnx) |
45
 
46
 
47
 
 
 
 
 
 
48
 
49
  ## Installation
50
 
 
100
  ```bash
101
  python -m qai_hub_models.models.litehrnet.export
102
  ```
 
103
  ```
104
+ Profiling Results
105
+ ------------------------------------------------------------
106
+ LiteHRNet
107
+ Device : Samsung Galaxy S23 (13)
108
+ Runtime : TFLITE
109
+ Estimated inference time (ms) : 8.0
110
+ Estimated peak memory usage (MB): [0, 3]
111
+ Total # Ops : 1235
112
+ Compute Unit(s) : NPU (1233 ops) CPU (2 ops)
113
  ```
114
 
115
 
 
208
  Get more details on LiteHRNet's performance across various devices [here](https://aihub.qualcomm.com/models/litehrnet).
209
  Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
210
 
211
+
212
  ## License
213
+ * The license for the original implementation of LiteHRNet can be found [here](https://github.com/HRNet/Lite-HRNet/blob/hrnet/LICENSE).
214
+ * The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
215
+
216
+
217
 
218
  ## References
219
  * [Lite-HRNet: A Lightweight High-Resolution Network](https://arxiv.org/abs/2104.06403)
220
  * [Source Model Implementation](https://github.com/HRNet/Lite-HRNet)
221
 
222
+
223
+
224
  ## Community
225
  * Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
226
  * For questions or feedback please [reach out to us](mailto:ai-hub-support@qti.qualcomm.com).