Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -16,7 +16,7 @@ tags:
|
|
16 |
|
17 |
DeepLabV3 is designed for semantic segmentation at multiple scales, trained on the various datasets. It uses MobileNet as a backbone.
|
18 |
|
19 |
-
This model is an implementation of DeepLabV3-Plus-MobileNet found [here](
|
20 |
This repository provides scripts to run DeepLabV3-Plus-MobileNet on Qualcomm® devices.
|
21 |
More details on model performance across various devices, can be found
|
22 |
[here](https://aihub.qualcomm.com/models/deeplabv3_plus_mobilenet).
|
@@ -32,15 +32,32 @@ More details on model performance across various devices, can be found
|
|
32 |
- Model size: 22.2 MB
|
33 |
- Number of output classes: 21
|
34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
|
37 |
|
38 |
-
| Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
39 |
-
| ---|---|---|---|---|---|---|---|
|
40 |
-
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 13.181 ms | 14 - 22 MB | FP16 | NPU | [DeepLabV3-Plus-MobileNet.tflite](https://huggingface.co/qualcomm/DeepLabV3-Plus-MobileNet/blob/main/DeepLabV3-Plus-MobileNet.tflite)
|
41 |
-
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 13.15 ms | 3 - 18 MB | FP16 | NPU | [DeepLabV3-Plus-MobileNet.so](https://huggingface.co/qualcomm/DeepLabV3-Plus-MobileNet/blob/main/DeepLabV3-Plus-MobileNet.so)
|
42 |
-
|
43 |
-
|
44 |
|
45 |
## Installation
|
46 |
|
@@ -95,16 +112,16 @@ device. This script does the following:
|
|
95 |
```bash
|
96 |
python -m qai_hub_models.models.deeplabv3_plus_mobilenet.export
|
97 |
```
|
98 |
-
|
99 |
```
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
|
|
108 |
```
|
109 |
|
110 |
|
@@ -203,15 +220,19 @@ provides instructions on how to use the `.so` shared library in an Android appl
|
|
203 |
Get more details on DeepLabV3-Plus-MobileNet's performance across various devices [here](https://aihub.qualcomm.com/models/deeplabv3_plus_mobilenet).
|
204 |
Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
|
205 |
|
|
|
206 |
## License
|
207 |
-
|
208 |
-
|
209 |
-
|
|
|
210 |
|
211 |
## References
|
212 |
* [Rethinking Atrous Convolution for Semantic Image Segmentation](https://arxiv.org/abs/1706.05587)
|
213 |
* [Source Model Implementation](https://github.com/jfzhang95/pytorch-deeplab-xception)
|
214 |
|
|
|
|
|
215 |
## Community
|
216 |
* Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
|
217 |
* For questions or feedback please [reach out to us](mailto:ai-hub-support@qti.qualcomm.com).
|
|
|
16 |
|
17 |
DeepLabV3 is designed for semantic segmentation at multiple scales, trained on the various datasets. It uses MobileNet as a backbone.
|
18 |
|
19 |
+
This model is an implementation of DeepLabV3-Plus-MobileNet found [here]({source_repo}).
|
20 |
This repository provides scripts to run DeepLabV3-Plus-MobileNet on Qualcomm® devices.
|
21 |
More details on model performance across various devices, can be found
|
22 |
[here](https://aihub.qualcomm.com/models/deeplabv3_plus_mobilenet).
|
|
|
32 |
- Model size: 22.2 MB
|
33 |
- Number of output classes: 21
|
34 |
|
35 |
+
| Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
36 |
+
|---|---|---|---|---|---|---|---|---|
|
37 |
+
| DeepLabV3-Plus-MobileNet | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 13.441 ms | 21 - 22 MB | FP16 | NPU | [DeepLabV3-Plus-MobileNet.tflite](https://huggingface.co/qualcomm/DeepLabV3-Plus-MobileNet/blob/main/DeepLabV3-Plus-MobileNet.tflite) |
|
38 |
+
| DeepLabV3-Plus-MobileNet | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 13.124 ms | 3 - 20 MB | FP16 | NPU | [DeepLabV3-Plus-MobileNet.so](https://huggingface.co/qualcomm/DeepLabV3-Plus-MobileNet/blob/main/DeepLabV3-Plus-MobileNet.so) |
|
39 |
+
| DeepLabV3-Plus-MobileNet | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 16.946 ms | 46 - 330 MB | FP16 | NPU | [DeepLabV3-Plus-MobileNet.onnx](https://huggingface.co/qualcomm/DeepLabV3-Plus-MobileNet/blob/main/DeepLabV3-Plus-MobileNet.onnx) |
|
40 |
+
| DeepLabV3-Plus-MobileNet | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 10.784 ms | 21 - 98 MB | FP16 | NPU | [DeepLabV3-Plus-MobileNet.tflite](https://huggingface.co/qualcomm/DeepLabV3-Plus-MobileNet/blob/main/DeepLabV3-Plus-MobileNet.tflite) |
|
41 |
+
| DeepLabV3-Plus-MobileNet | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 10.749 ms | 3 - 28 MB | FP16 | NPU | [DeepLabV3-Plus-MobileNet.so](https://huggingface.co/qualcomm/DeepLabV3-Plus-MobileNet/blob/main/DeepLabV3-Plus-MobileNet.so) |
|
42 |
+
| DeepLabV3-Plus-MobileNet | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 15.136 ms | 1 - 82 MB | FP16 | NPU | [DeepLabV3-Plus-MobileNet.onnx](https://huggingface.co/qualcomm/DeepLabV3-Plus-MobileNet/blob/main/DeepLabV3-Plus-MobileNet.onnx) |
|
43 |
+
| DeepLabV3-Plus-MobileNet | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 13.166 ms | 21 - 65 MB | FP16 | NPU | [DeepLabV3-Plus-MobileNet.tflite](https://huggingface.co/qualcomm/DeepLabV3-Plus-MobileNet/blob/main/DeepLabV3-Plus-MobileNet.tflite) |
|
44 |
+
| DeepLabV3-Plus-MobileNet | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 12.047 ms | 3 - 4 MB | FP16 | NPU | Use Export Script |
|
45 |
+
| DeepLabV3-Plus-MobileNet | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 13.288 ms | 21 - 33 MB | FP16 | NPU | [DeepLabV3-Plus-MobileNet.tflite](https://huggingface.co/qualcomm/DeepLabV3-Plus-MobileNet/blob/main/DeepLabV3-Plus-MobileNet.tflite) |
|
46 |
+
| DeepLabV3-Plus-MobileNet | SA8255 (Proxy) | SA8255P Proxy | QNN | 12.206 ms | 3 - 4 MB | FP16 | NPU | Use Export Script |
|
47 |
+
| DeepLabV3-Plus-MobileNet | SA8775 (Proxy) | SA8775P Proxy | TFLITE | 13.223 ms | 14 - 19 MB | FP16 | NPU | [DeepLabV3-Plus-MobileNet.tflite](https://huggingface.co/qualcomm/DeepLabV3-Plus-MobileNet/blob/main/DeepLabV3-Plus-MobileNet.tflite) |
|
48 |
+
| DeepLabV3-Plus-MobileNet | SA8775 (Proxy) | SA8775P Proxy | QNN | 12.296 ms | 3 - 4 MB | FP16 | NPU | Use Export Script |
|
49 |
+
| DeepLabV3-Plus-MobileNet | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 13.234 ms | 27 - 29 MB | FP16 | NPU | [DeepLabV3-Plus-MobileNet.tflite](https://huggingface.co/qualcomm/DeepLabV3-Plus-MobileNet/blob/main/DeepLabV3-Plus-MobileNet.tflite) |
|
50 |
+
| DeepLabV3-Plus-MobileNet | SA8650 (Proxy) | SA8650P Proxy | QNN | 12.164 ms | 3 - 4 MB | FP16 | NPU | Use Export Script |
|
51 |
+
| DeepLabV3-Plus-MobileNet | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 18.816 ms | 21 - 97 MB | FP16 | NPU | [DeepLabV3-Plus-MobileNet.tflite](https://huggingface.co/qualcomm/DeepLabV3-Plus-MobileNet/blob/main/DeepLabV3-Plus-MobileNet.tflite) |
|
52 |
+
| DeepLabV3-Plus-MobileNet | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 18.643 ms | 3 - 30 MB | FP16 | NPU | Use Export Script |
|
53 |
+
| DeepLabV3-Plus-MobileNet | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 7.831 ms | 19 - 56 MB | FP16 | NPU | [DeepLabV3-Plus-MobileNet.tflite](https://huggingface.co/qualcomm/DeepLabV3-Plus-MobileNet/blob/main/DeepLabV3-Plus-MobileNet.tflite) |
|
54 |
+
| DeepLabV3-Plus-MobileNet | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 9.188 ms | 3 - 26 MB | FP16 | NPU | Use Export Script |
|
55 |
+
| DeepLabV3-Plus-MobileNet | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 11.971 ms | 51 - 90 MB | FP16 | NPU | [DeepLabV3-Plus-MobileNet.onnx](https://huggingface.co/qualcomm/DeepLabV3-Plus-MobileNet/blob/main/DeepLabV3-Plus-MobileNet.onnx) |
|
56 |
+
| DeepLabV3-Plus-MobileNet | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 12.38 ms | 3 - 3 MB | FP16 | NPU | Use Export Script |
|
57 |
+
| DeepLabV3-Plus-MobileNet | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 16.661 ms | 66 - 66 MB | FP16 | NPU | [DeepLabV3-Plus-MobileNet.onnx](https://huggingface.co/qualcomm/DeepLabV3-Plus-MobileNet/blob/main/DeepLabV3-Plus-MobileNet.onnx) |
|
58 |
|
59 |
|
60 |
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
## Installation
|
63 |
|
|
|
112 |
```bash
|
113 |
python -m qai_hub_models.models.deeplabv3_plus_mobilenet.export
|
114 |
```
|
|
|
115 |
```
|
116 |
+
Profiling Results
|
117 |
+
------------------------------------------------------------
|
118 |
+
DeepLabV3-Plus-MobileNet
|
119 |
+
Device : Samsung Galaxy S23 (13)
|
120 |
+
Runtime : TFLITE
|
121 |
+
Estimated inference time (ms) : 13.4
|
122 |
+
Estimated peak memory usage (MB): [21, 22]
|
123 |
+
Total # Ops : 98
|
124 |
+
Compute Unit(s) : NPU (98 ops)
|
125 |
```
|
126 |
|
127 |
|
|
|
220 |
Get more details on DeepLabV3-Plus-MobileNet's performance across various devices [here](https://aihub.qualcomm.com/models/deeplabv3_plus_mobilenet).
|
221 |
Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
|
222 |
|
223 |
+
|
224 |
## License
|
225 |
+
* The license for the original implementation of DeepLabV3-Plus-MobileNet can be found [here](https://github.com/jfzhang95/pytorch-deeplab-xception/blob/master/LICENSE).
|
226 |
+
* The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
|
227 |
+
|
228 |
+
|
229 |
|
230 |
## References
|
231 |
* [Rethinking Atrous Convolution for Semantic Image Segmentation](https://arxiv.org/abs/1706.05587)
|
232 |
* [Source Model Implementation](https://github.com/jfzhang95/pytorch-deeplab-xception)
|
233 |
|
234 |
+
|
235 |
+
|
236 |
## Community
|
237 |
* Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
|
238 |
* For questions or feedback please [reach out to us](mailto:ai-hub-support@qti.qualcomm.com).
|