Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -32,10 +32,12 @@ More details on model performance across various devices, can be found
|
|
32 |
- Model size: 158 MB
|
33 |
|
34 |
|
|
|
|
|
35 |
| Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
36 |
| ---|---|---|---|---|---|---|---|
|
37 |
-
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite |
|
38 |
-
|
39 |
|
40 |
|
41 |
## Installation
|
@@ -93,19 +95,11 @@ device. This script does the following:
|
|
93 |
python -m qai_hub_models.models.detr_resnet50.export
|
94 |
```
|
95 |
|
96 |
-
```
|
97 |
-
Profile Job summary of DETR-ResNet50
|
98 |
-
--------------------------------------------------
|
99 |
-
Device: Snapdragon X Elite CRD (11)
|
100 |
-
Estimated Inference Time: 22.40 ms
|
101 |
-
Estimated Peak Memory Range: 2.64-2.64 MB
|
102 |
-
Compute Units: NPU (863) | Total (863)
|
103 |
|
104 |
|
105 |
-
```
|
106 |
## How does this work?
|
107 |
|
108 |
-
This [export script](https://
|
109 |
leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
|
110 |
on-device. Lets go through each step below in detail:
|
111 |
|
@@ -182,6 +176,7 @@ spot check the output with expected output.
|
|
182 |
AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup).
|
183 |
|
184 |
|
|
|
185 |
## Run demo on a cloud-hosted device
|
186 |
|
187 |
You can also run the demo on-device.
|
@@ -218,7 +213,7 @@ Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
|
|
218 |
## License
|
219 |
- The license for the original implementation of DETR-ResNet50 can be found
|
220 |
[here](https://github.com/facebookresearch/detr/blob/main/LICENSE).
|
221 |
-
- The license for the compiled assets for on-device deployment can be found [here](
|
222 |
|
223 |
## References
|
224 |
* [End-to-End Object Detection with Transformers](https://arxiv.org/abs/2005.12872)
|
|
|
32 |
- Model size: 158 MB
|
33 |
|
34 |
|
35 |
+
|
36 |
+
|
37 |
| Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
38 |
| ---|---|---|---|---|---|---|---|
|
39 |
+
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 21.615 ms | 2 - 5 MB | FP16 | NPU | [DETR-ResNet50.tflite](https://huggingface.co/qualcomm/DETR-ResNet50/blob/main/DETR-ResNet50.tflite)
|
40 |
+
|
41 |
|
42 |
|
43 |
## Installation
|
|
|
95 |
python -m qai_hub_models.models.detr_resnet50.export
|
96 |
```
|
97 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
|
99 |
|
|
|
100 |
## How does this work?
|
101 |
|
102 |
+
This [export script](https://aihub.qualcomm.com/models/detr_resnet50/qai_hub_models/models/DETR-ResNet50/export.py)
|
103 |
leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
|
104 |
on-device. Lets go through each step below in detail:
|
105 |
|
|
|
176 |
AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup).
|
177 |
|
178 |
|
179 |
+
|
180 |
## Run demo on a cloud-hosted device
|
181 |
|
182 |
You can also run the demo on-device.
|
|
|
213 |
## License
|
214 |
- The license for the original implementation of DETR-ResNet50 can be found
|
215 |
[here](https://github.com/facebookresearch/detr/blob/main/LICENSE).
|
216 |
+
- The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
|
217 |
|
218 |
## References
|
219 |
* [End-to-End Object Detection with Transformers](https://arxiv.org/abs/2005.12872)
|