qaihm-bot commited on
Commit
8404823
1 Parent(s): 79dc5ca

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +33 -10
README.md CHANGED
@@ -16,7 +16,7 @@ tags:
16
 
17
  DETR is a machine learning model that can detect objects (trained on COCO dataset).
18
 
19
- This model is an implementation of DETR-ResNet50-DC5 found [here](https://github.com/facebookresearch/detr).
20
  This repository provides scripts to run DETR-ResNet50-DC5 on Qualcomm® devices.
21
  More details on model performance across various devices, can be found
22
  [here](https://aihub.qualcomm.com/models/detr_resnet50_dc5).
@@ -31,14 +31,23 @@ More details on model performance across various devices, can be found
31
  - Number of parameters: 42.2M
32
  - Model size: 159 MB
33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34
 
35
 
36
 
37
- | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
38
- | ---|---|---|---|---|---|---|---|
39
- | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 111.119 ms | 0 - 2 MB | FP16 | NPU | [DETR-ResNet50-DC5.tflite](https://huggingface.co/qualcomm/DETR-ResNet50-DC5/blob/main/DETR-ResNet50-DC5.tflite)
40
-
41
-
42
 
43
  ## Installation
44
 
@@ -94,7 +103,17 @@ device. This script does the following:
94
  ```bash
95
  python -m qai_hub_models.models.detr_resnet50_dc5.export
96
  ```
97
-
 
 
 
 
 
 
 
 
 
 
98
 
99
 
100
  ## How does this work?
@@ -192,15 +211,19 @@ provides instructions on how to use the `.so` shared library in an Android appl
192
  Get more details on DETR-ResNet50-DC5's performance across various devices [here](https://aihub.qualcomm.com/models/detr_resnet50_dc5).
193
  Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
194
 
 
195
  ## License
196
- - The license for the original implementation of DETR-ResNet50-DC5 can be found
197
- [here](https://github.com/facebookresearch/detr/blob/main/LICENSE).
198
- - The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
 
199
 
200
  ## References
201
  * [End-to-End Object Detection with Transformers](https://arxiv.org/abs/2005.12872)
202
  * [Source Model Implementation](https://github.com/facebookresearch/detr)
203
 
 
 
204
  ## Community
205
  * Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
206
  * For questions or feedback please [reach out to us](mailto:ai-hub-support@qti.qualcomm.com).
 
16
 
17
  DETR is a machine learning model that can detect objects (trained on COCO dataset).
18
 
19
+ This model is an implementation of DETR-ResNet50-DC5 found [here]({source_repo}).
20
  This repository provides scripts to run DETR-ResNet50-DC5 on Qualcomm® devices.
21
  More details on model performance across various devices, can be found
22
  [here](https://aihub.qualcomm.com/models/detr_resnet50_dc5).
 
31
  - Number of parameters: 42.2M
32
  - Model size: 159 MB
33
 
34
+ | Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
35
+ |---|---|---|---|---|---|---|---|---|
36
+ | DETR-ResNet50-DC5 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 75.052 ms | 0 - 2 MB | FP16 | NPU | [DETR-ResNet50-DC5.tflite](https://huggingface.co/qualcomm/DETR-ResNet50-DC5/blob/main/DETR-ResNet50-DC5.tflite) |
37
+ | DETR-ResNet50-DC5 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 92.231 ms | 0 - 96 MB | FP16 | NPU | [DETR-ResNet50-DC5.onnx](https://huggingface.co/qualcomm/DETR-ResNet50-DC5/blob/main/DETR-ResNet50-DC5.onnx) |
38
+ | DETR-ResNet50-DC5 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 68.196 ms | 0 - 493 MB | FP16 | NPU | [DETR-ResNet50-DC5.tflite](https://huggingface.co/qualcomm/DETR-ResNet50-DC5/blob/main/DETR-ResNet50-DC5.tflite) |
39
+ | DETR-ResNet50-DC5 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 81.134 ms | 2 - 505 MB | FP16 | NPU | [DETR-ResNet50-DC5.onnx](https://huggingface.co/qualcomm/DETR-ResNet50-DC5/blob/main/DETR-ResNet50-DC5.onnx) |
40
+ | DETR-ResNet50-DC5 | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 74.434 ms | 0 - 2 MB | FP16 | NPU | [DETR-ResNet50-DC5.tflite](https://huggingface.co/qualcomm/DETR-ResNet50-DC5/blob/main/DETR-ResNet50-DC5.tflite) |
41
+ | DETR-ResNet50-DC5 | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 85.586 ms | 0 - 3 MB | FP16 | NPU | [DETR-ResNet50-DC5.tflite](https://huggingface.co/qualcomm/DETR-ResNet50-DC5/blob/main/DETR-ResNet50-DC5.tflite) |
42
+ | DETR-ResNet50-DC5 | SA8775 (Proxy) | SA8775P Proxy | TFLITE | 74.502 ms | 0 - 3 MB | FP16 | NPU | [DETR-ResNet50-DC5.tflite](https://huggingface.co/qualcomm/DETR-ResNet50-DC5/blob/main/DETR-ResNet50-DC5.tflite) |
43
+ | DETR-ResNet50-DC5 | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 80.512 ms | 0 - 3 MB | FP16 | NPU | [DETR-ResNet50-DC5.tflite](https://huggingface.co/qualcomm/DETR-ResNet50-DC5/blob/main/DETR-ResNet50-DC5.tflite) |
44
+ | DETR-ResNet50-DC5 | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 91.938 ms | 0 - 455 MB | FP16 | NPU | [DETR-ResNet50-DC5.tflite](https://huggingface.co/qualcomm/DETR-ResNet50-DC5/blob/main/DETR-ResNet50-DC5.tflite) |
45
+ | DETR-ResNet50-DC5 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 49.532 ms | 0 - 253 MB | FP16 | NPU | [DETR-ResNet50-DC5.tflite](https://huggingface.co/qualcomm/DETR-ResNet50-DC5/blob/main/DETR-ResNet50-DC5.tflite) |
46
+ | DETR-ResNet50-DC5 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 66.336 ms | 2 - 295 MB | FP16 | NPU | [DETR-ResNet50-DC5.onnx](https://huggingface.co/qualcomm/DETR-ResNet50-DC5/blob/main/DETR-ResNet50-DC5.onnx) |
47
+ | DETR-ResNet50-DC5 | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 65.232 ms | 83 - 83 MB | FP16 | NPU | [DETR-ResNet50-DC5.onnx](https://huggingface.co/qualcomm/DETR-ResNet50-DC5/blob/main/DETR-ResNet50-DC5.onnx) |
48
 
49
 
50
 
 
 
 
 
 
51
 
52
  ## Installation
53
 
 
103
  ```bash
104
  python -m qai_hub_models.models.detr_resnet50_dc5.export
105
  ```
106
+ ```
107
+ Profiling Results
108
+ ------------------------------------------------------------
109
+ DETR-ResNet50-DC5
110
+ Device : Samsung Galaxy S23 (13)
111
+ Runtime : TFLITE
112
+ Estimated inference time (ms) : 75.1
113
+ Estimated peak memory usage (MB): [0, 2]
114
+ Total # Ops : 789
115
+ Compute Unit(s) : NPU (789 ops)
116
+ ```
117
 
118
 
119
  ## How does this work?
 
211
  Get more details on DETR-ResNet50-DC5's performance across various devices [here](https://aihub.qualcomm.com/models/detr_resnet50_dc5).
212
  Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
213
 
214
+
215
  ## License
216
+ * The license for the original implementation of DETR-ResNet50-DC5 can be found [here](https://github.com/facebookresearch/detr/blob/main/LICENSE).
217
+ * The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
218
+
219
+
220
 
221
  ## References
222
  * [End-to-End Object Detection with Transformers](https://arxiv.org/abs/2005.12872)
223
  * [Source Model Implementation](https://github.com/facebookresearch/detr)
224
 
225
+
226
+
227
  ## Community
228
  * Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
229
  * For questions or feedback please [reach out to us](mailto:ai-hub-support@qti.qualcomm.com).