Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -16,7 +16,7 @@ tags:
|
|
16 |
|
17 |
DETR is a machine learning model that can detect objects (trained on COCO dataset).
|
18 |
|
19 |
-
This model is an implementation of DETR-ResNet50-DC5 found [here](
|
20 |
This repository provides scripts to run DETR-ResNet50-DC5 on Qualcomm® devices.
|
21 |
More details on model performance across various devices, can be found
|
22 |
[here](https://aihub.qualcomm.com/models/detr_resnet50_dc5).
|
@@ -31,14 +31,23 @@ More details on model performance across various devices, can be found
|
|
31 |
- Number of parameters: 42.2M
|
32 |
- Model size: 159 MB
|
33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
|
36 |
|
37 |
-
| Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
38 |
-
| ---|---|---|---|---|---|---|---|
|
39 |
-
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 111.119 ms | 0 - 2 MB | FP16 | NPU | [DETR-ResNet50-DC5.tflite](https://huggingface.co/qualcomm/DETR-ResNet50-DC5/blob/main/DETR-ResNet50-DC5.tflite)
|
40 |
-
|
41 |
-
|
42 |
|
43 |
## Installation
|
44 |
|
@@ -94,7 +103,17 @@ device. This script does the following:
|
|
94 |
```bash
|
95 |
python -m qai_hub_models.models.detr_resnet50_dc5.export
|
96 |
```
|
97 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
|
99 |
|
100 |
## How does this work?
|
@@ -192,15 +211,19 @@ provides instructions on how to use the `.so` shared library in an Android appl
|
|
192 |
Get more details on DETR-ResNet50-DC5's performance across various devices [here](https://aihub.qualcomm.com/models/detr_resnet50_dc5).
|
193 |
Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
|
194 |
|
|
|
195 |
## License
|
196 |
-
|
197 |
-
|
198 |
-
|
|
|
199 |
|
200 |
## References
|
201 |
* [End-to-End Object Detection with Transformers](https://arxiv.org/abs/2005.12872)
|
202 |
* [Source Model Implementation](https://github.com/facebookresearch/detr)
|
203 |
|
|
|
|
|
204 |
## Community
|
205 |
* Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
|
206 |
* For questions or feedback please [reach out to us](mailto:ai-hub-support@qti.qualcomm.com).
|
|
|
16 |
|
17 |
DETR is a machine learning model that can detect objects (trained on COCO dataset).
|
18 |
|
19 |
+
This model is an implementation of DETR-ResNet50-DC5 found [here]({source_repo}).
|
20 |
This repository provides scripts to run DETR-ResNet50-DC5 on Qualcomm® devices.
|
21 |
More details on model performance across various devices, can be found
|
22 |
[here](https://aihub.qualcomm.com/models/detr_resnet50_dc5).
|
|
|
31 |
- Number of parameters: 42.2M
|
32 |
- Model size: 159 MB
|
33 |
|
34 |
+
| Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
35 |
+
|---|---|---|---|---|---|---|---|---|
|
36 |
+
| DETR-ResNet50-DC5 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 75.052 ms | 0 - 2 MB | FP16 | NPU | [DETR-ResNet50-DC5.tflite](https://huggingface.co/qualcomm/DETR-ResNet50-DC5/blob/main/DETR-ResNet50-DC5.tflite) |
|
37 |
+
| DETR-ResNet50-DC5 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 92.231 ms | 0 - 96 MB | FP16 | NPU | [DETR-ResNet50-DC5.onnx](https://huggingface.co/qualcomm/DETR-ResNet50-DC5/blob/main/DETR-ResNet50-DC5.onnx) |
|
38 |
+
| DETR-ResNet50-DC5 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 68.196 ms | 0 - 493 MB | FP16 | NPU | [DETR-ResNet50-DC5.tflite](https://huggingface.co/qualcomm/DETR-ResNet50-DC5/blob/main/DETR-ResNet50-DC5.tflite) |
|
39 |
+
| DETR-ResNet50-DC5 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 81.134 ms | 2 - 505 MB | FP16 | NPU | [DETR-ResNet50-DC5.onnx](https://huggingface.co/qualcomm/DETR-ResNet50-DC5/blob/main/DETR-ResNet50-DC5.onnx) |
|
40 |
+
| DETR-ResNet50-DC5 | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 74.434 ms | 0 - 2 MB | FP16 | NPU | [DETR-ResNet50-DC5.tflite](https://huggingface.co/qualcomm/DETR-ResNet50-DC5/blob/main/DETR-ResNet50-DC5.tflite) |
|
41 |
+
| DETR-ResNet50-DC5 | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 85.586 ms | 0 - 3 MB | FP16 | NPU | [DETR-ResNet50-DC5.tflite](https://huggingface.co/qualcomm/DETR-ResNet50-DC5/blob/main/DETR-ResNet50-DC5.tflite) |
|
42 |
+
| DETR-ResNet50-DC5 | SA8775 (Proxy) | SA8775P Proxy | TFLITE | 74.502 ms | 0 - 3 MB | FP16 | NPU | [DETR-ResNet50-DC5.tflite](https://huggingface.co/qualcomm/DETR-ResNet50-DC5/blob/main/DETR-ResNet50-DC5.tflite) |
|
43 |
+
| DETR-ResNet50-DC5 | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 80.512 ms | 0 - 3 MB | FP16 | NPU | [DETR-ResNet50-DC5.tflite](https://huggingface.co/qualcomm/DETR-ResNet50-DC5/blob/main/DETR-ResNet50-DC5.tflite) |
|
44 |
+
| DETR-ResNet50-DC5 | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 91.938 ms | 0 - 455 MB | FP16 | NPU | [DETR-ResNet50-DC5.tflite](https://huggingface.co/qualcomm/DETR-ResNet50-DC5/blob/main/DETR-ResNet50-DC5.tflite) |
|
45 |
+
| DETR-ResNet50-DC5 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 49.532 ms | 0 - 253 MB | FP16 | NPU | [DETR-ResNet50-DC5.tflite](https://huggingface.co/qualcomm/DETR-ResNet50-DC5/blob/main/DETR-ResNet50-DC5.tflite) |
|
46 |
+
| DETR-ResNet50-DC5 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 66.336 ms | 2 - 295 MB | FP16 | NPU | [DETR-ResNet50-DC5.onnx](https://huggingface.co/qualcomm/DETR-ResNet50-DC5/blob/main/DETR-ResNet50-DC5.onnx) |
|
47 |
+
| DETR-ResNet50-DC5 | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 65.232 ms | 83 - 83 MB | FP16 | NPU | [DETR-ResNet50-DC5.onnx](https://huggingface.co/qualcomm/DETR-ResNet50-DC5/blob/main/DETR-ResNet50-DC5.onnx) |
|
48 |
|
49 |
|
50 |
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
## Installation
|
53 |
|
|
|
103 |
```bash
|
104 |
python -m qai_hub_models.models.detr_resnet50_dc5.export
|
105 |
```
|
106 |
+
```
|
107 |
+
Profiling Results
|
108 |
+
------------------------------------------------------------
|
109 |
+
DETR-ResNet50-DC5
|
110 |
+
Device : Samsung Galaxy S23 (13)
|
111 |
+
Runtime : TFLITE
|
112 |
+
Estimated inference time (ms) : 75.1
|
113 |
+
Estimated peak memory usage (MB): [0, 2]
|
114 |
+
Total # Ops : 789
|
115 |
+
Compute Unit(s) : NPU (789 ops)
|
116 |
+
```
|
117 |
|
118 |
|
119 |
## How does this work?
|
|
|
211 |
Get more details on DETR-ResNet50-DC5's performance across various devices [here](https://aihub.qualcomm.com/models/detr_resnet50_dc5).
|
212 |
Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
|
213 |
|
214 |
+
|
215 |
## License
|
216 |
+
* The license for the original implementation of DETR-ResNet50-DC5 can be found [here](https://github.com/facebookresearch/detr/blob/main/LICENSE).
|
217 |
+
* The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
|
218 |
+
|
219 |
+
|
220 |
|
221 |
## References
|
222 |
* [End-to-End Object Detection with Transformers](https://arxiv.org/abs/2005.12872)
|
223 |
* [Source Model Implementation](https://github.com/facebookresearch/detr)
|
224 |
|
225 |
+
|
226 |
+
|
227 |
## Community
|
228 |
* Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
|
229 |
* For questions or feedback please [reach out to us](mailto:ai-hub-support@qti.qualcomm.com).
|