|
import torch |
|
import torch.nn as nn |
|
from transformers import ( |
|
PreTrainedModel, |
|
AutoModelForCausalLM, |
|
AutoModel, |
|
SiglipImageProcessor, |
|
) |
|
from .configuration_llamavision import LlamavisionConfig |
|
|
|
|
|
class ProjectionModule(nn.Module): |
|
def __init__(self, mm_hidden_size=1152, hidden_size=4096): |
|
super(ProjectionModule, self).__init__() |
|
|
|
|
|
self.model = nn.Sequential( |
|
nn.Linear(mm_hidden_size, hidden_size), |
|
nn.GELU(), |
|
nn.Linear(hidden_size, hidden_size), |
|
) |
|
|
|
def forward(self, x): |
|
return self.model(x) |
|
|
|
|
|
class Llamavision(PreTrainedModel): |
|
config_class = LlamavisionConfig |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
|
|
self.vision_model = AutoModel.from_config(self.config.vision_config) |
|
self.text_model = AutoModelForCausalLM.from_config(self.config.text_config) |
|
self.processor = SiglipImageProcessor() |
|
self.mm_projector = ProjectionModule( |
|
mm_hidden_size=config.vision_config.hidden_size, |
|
hidden_size=config.text_config.hidden_size, |
|
) |
|
|
|
@property |
|
def device(self): |
|
return self.text_model.device |
|
|
|
def encode_image(self, image): |
|
image = image.convert("RGB") |
|
image = self.processor( |
|
images=image, |
|
return_tensors="pt", |
|
do_resize=True, |
|
size={"height": 378, "width": 378}, |
|
)["pixel_values"].to( |
|
device=self.vision_model.device, dtype=self.vision_model.dtype |
|
) |
|
with torch.no_grad(): |
|
return self.vision_model(image, output_hidden_states=True).hidden_states[-2] |
|
|
|
def input_embeds(self, prompt, image_embeds, tokenizer): |
|
def _tokenize(txt): |
|
return tokenizer( |
|
txt, return_tensors="pt", add_special_tokens=False |
|
).input_ids.to(self.device) |
|
|
|
text_emb = self.text_model.get_input_embeddings() |
|
|
|
embeds = [] |
|
|
|
tokenized_prompt = _tokenize(prompt) |
|
if ( |
|
tokenizer.bos_token_id is not None |
|
and tokenized_prompt[0][0] != tokenizer.bos_token_id |
|
): |
|
embeds.append( |
|
text_emb(torch.tensor([[tokenizer.bos_token_id]], device=self.device)) |
|
) |
|
|
|
projected_image_embeds = self.mm_projector(image_embeds.to(self.device)) |
|
embeds.append(projected_image_embeds) |
|
|
|
embeds.append(text_emb(tokenized_prompt)) |
|
|
|
return torch.cat(embeds, dim=1) |
|
|
|
def get_input_embeddings(self): |
|
return self.text_model.get_input_embeddings() |
|
|
|
def generate( |
|
self, |
|
image_embeds, |
|
prompt, |
|
tokenizer, |
|
max_new_tokens=128, |
|
**kwargs, |
|
): |
|
generate_config = { |
|
"eos_token_id": [ |
|
tokenizer.eos_token_id, |
|
tokenizer.convert_tokens_to_ids("<|eot_id|>"), |
|
], |
|
"bos_token_id": tokenizer.bos_token_id, |
|
"pad_token_id": tokenizer.pad_token_id, |
|
"max_new_tokens": max_new_tokens, |
|
**kwargs, |
|
} |
|
|
|
with torch.no_grad(): |
|
inputs_embeds = self.input_embeds(prompt, image_embeds, tokenizer) |
|
output_ids = self.text_model.generate( |
|
inputs_embeds=inputs_embeds, **generate_config |
|
) |
|
|
|
return tokenizer.batch_decode(output_ids, skip_special_tokens=True) |
|
|
|
def answer_question(self, image, question, tokenizer, **kwargs): |
|
image_embeds = self.encode_image(image) |
|
|
|
chat = [ |
|
{ |
|
"role": "system", |
|
"content": "You are a helpful AI assistant that can see images and answer questions about them.", |
|
}, |
|
{"role": "user", "content": question}, |
|
] |
|
prompt = tokenizer.apply_chat_template( |
|
chat, tokenize=False, add_generation_prompt=True |
|
) |
|
|
|
|
|
with torch.no_grad(): |
|
output = self.generate( |
|
image_embeds=image_embeds, |
|
prompt=prompt, |
|
tokenizer=tokenizer, |
|
**kwargs, |
|
)[0] |
|
|
|
|
|
cleaned_answer = output.strip() |
|
return cleaned_answer |