DiffMorpher / app.py
qninhdt's picture
Upload 53 files
bf63092 verified
import os
import torch
import numpy as np
import cv2
import gradio as gr
from PIL import Image
from datetime import datetime
from model import DiffMorpherPipeline
from utils.lora_utils import train_lora
LENGTH=450
def train_lora_interface(
image,
prompt,
model_path,
output_path,
lora_steps,
lora_rank,
lora_lr,
num
):
os.makedirs(output_path, exist_ok=True)
train_lora(image, prompt, output_path, model_path,
lora_steps=lora_steps, lora_lr=lora_lr, lora_rank=lora_rank, weight_name=f"lora_{num}.ckpt", progress=gr.Progress())
return f"Train LoRA {'A' if num == 0 else 'B'} Done!"
def run_diffmorpher(
image_0,
image_1,
prompt_0,
prompt_1,
model_path,
lora_mode,
lamb,
use_adain,
use_reschedule,
num_frames,
fps,
save_inter,
load_lora_path_0,
load_lora_path_1,
output_path
):
run_id = datetime.now().strftime("%H%M") + "_" + datetime.now().strftime("%Y%m%d")
os.makedirs(output_path, exist_ok=True)
morpher_pipeline = DiffMorpherPipeline.from_pretrained(model_path, torch_dtype=torch.float32).to("cuda")
if lora_mode == "Fix LoRA A":
fix_lora = 0
elif lora_mode == "Fix LoRA B":
fix_lora = 1
else:
fix_lora = None
if not load_lora_path_0:
load_lora_path_0 = f"{output_path}/lora_0.ckpt"
if not load_lora_path_1:
load_lora_path_1 = f"{output_path}/lora_1.ckpt"
images = morpher_pipeline(
img_0=image_0,
img_1=image_1,
prompt_0=prompt_0,
prompt_1=prompt_1,
load_lora_path_0=load_lora_path_0,
load_lora_path_1=load_lora_path_1,
lamb=lamb,
use_adain=use_adain,
use_reschedule=use_reschedule,
num_frames=num_frames,
fix_lora=fix_lora,
save_intermediates=save_inter,
progress=gr.Progress()
)
video_path = f"{output_path}/{run_id}.mp4"
video = cv2.VideoWriter(video_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (512, 512))
for i, image in enumerate(images):
# image.save(f"{output_path}/{i}.png")
video.write(cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR))
video.release()
cv2.destroyAllWindows()
return gr.Video(value=video_path, format="mp4", label="Output video", show_label=True, height=LENGTH, width=LENGTH, interactive=False)
def run_all(
image_0,
image_1,
prompt_0,
prompt_1,
model_path,
lora_mode,
lamb,
use_adain,
use_reschedule,
num_frames,
fps,
save_inter,
load_lora_path_0,
load_lora_path_1,
output_path,
lora_steps,
lora_rank,
lora_lr
):
os.makedirs(output_path, exist_ok=True)
train_lora(image_0, prompt_0, output_path, model_path,
lora_steps=lora_steps, lora_lr=lora_lr, lora_rank=lora_rank, weight_name=f"lora_0.ckpt", progress=gr.Progress())
train_lora(image_1, prompt_1, output_path, model_path,
lora_steps=lora_steps, lora_lr=lora_lr, lora_rank=lora_rank, weight_name=f"lora_1.ckpt", progress=gr.Progress())
return run_diffmorpher(
image_0,
image_1,
prompt_0,
prompt_1,
model_path,
lora_mode,
lamb,
use_adain,
use_reschedule,
num_frames,
fps,
save_inter,
load_lora_path_0,
load_lora_path_1,
output_path
)
with gr.Blocks() as demo:
with gr.Row():
gr.Markdown("""
# Official Implementation of [DiffMorpher](https://kevin-thu.github.io/DiffMorpher_page/)
""")
original_image_0, original_image_1 = gr.State(Image.open("assets/Trump.jpg").convert("RGB").resize((512,512), Image.BILINEAR)), gr.State(Image.open("assets/Biden.jpg").convert("RGB").resize((512,512), Image.BILINEAR))
# key_points_0, key_points_1 = gr.State([]), gr.State([])
# to_change_points = gr.State([])
with gr.Row():
with gr.Column():
input_img_0 = gr.Image(type="numpy", label="Input image A", value="assets/Trump.jpg", show_label=True, height=LENGTH, width=LENGTH, interactive=True)
prompt_0 = gr.Textbox(label="Prompt for image A", value="a photo of an American man", interactive=True)
with gr.Row():
train_lora_0_button = gr.Button("Train LoRA A")
train_lora_1_button = gr.Button("Train LoRA B")
# show_correspond_button = gr.Button("Show correspondence points")
with gr.Column():
input_img_1 = gr.Image(type="numpy", label="Input image B ", value="assets/Biden.jpg", show_label=True, height=LENGTH, width=LENGTH, interactive=True)
prompt_1 = gr.Textbox(label="Prompt for image B", value="a photo of an American man", interactive=True)
with gr.Row():
clear_button = gr.Button("Clear All")
run_button = gr.Button("Run w/o LoRA training")
with gr.Column():
output_video = gr.Video(format="mp4", label="Output video", show_label=True, height=LENGTH, width=LENGTH, interactive=False)
lora_progress_bar = gr.Textbox(label="Display LoRA training progress", interactive=False)
run_all_button = gr.Button("Run!")
# with gr.Column():
# output_video = gr.Video(label="Output video", show_label=True, height=LENGTH, width=LENGTH)
with gr.Row():
gr.Markdown("""
### Usage:
1. Upload two images (with correspondence) and fill out the prompts.
(It's recommended to change `[Output path]` accordingly.)
2. Click **"Run!"**
Or:
1. Upload two images (with correspondence) and fill out the prompts.
2. Click the **"Train LoRA A/B"** button to fit two LoRAs for two images respectively. <br> &nbsp;&nbsp;
If you have trained LoRA A or LoRA B before, you can skip the step and fill the specific LoRA path in LoRA settings. <br> &nbsp;&nbsp;
Trained LoRAs are saved to `[Output Path]/lora_0.ckpt` and `[Output Path]/lora_1.ckpt` by default.
3. You might also change the settings below.
4. Click **"Run w/o LoRA training"**
### Note:
1. To speed up the generation process, you can **ruduce the number of frames** or **turn off "Use Reschedule"**.
2. You can try the influence of different prompts. It seems that using the same prompts or aligned prompts works better.
### Have fun!
""")
with gr.Accordion(label="Algorithm Parameters"):
with gr.Tab("Basic Settings"):
with gr.Row():
# local_models_dir = 'local_pretrained_models'
# local_models_choice = \
# [os.path.join(local_models_dir,d) for d in os.listdir(local_models_dir) if os.path.isdir(os.path.join(local_models_dir,d))]
model_path = gr.Text(value="stabilityai/stable-diffusion-2-1-base",
label="Diffusion Model Path", interactive=True
)
lamb = gr.Slider(value=0.6, minimum=0, maximum=1, step=0.1, label="Lambda for attention replacement", interactive=True)
lora_mode = gr.Dropdown(value="LoRA Interp",
label="LoRA Interp. or Fix LoRA",
choices=["LoRA Interp", "Fix LoRA A", "Fix LoRA B"],
interactive=True
)
use_adain = gr.Checkbox(value=True, label="Use AdaIN", interactive=True)
use_reschedule = gr.Checkbox(value=True, label="Use Reschedule", interactive=True)
with gr.Row():
num_frames = gr.Number(value=16, minimum=0, label="Number of Frames", precision=0, interactive=True)
fps = gr.Number(value=8, minimum=0, label="FPS (Frame rate)", precision=0, interactive=True)
save_inter = gr.Checkbox(value=False, label="Save Intermediate Images", interactive=True)
output_path = gr.Text(value="./results", label="Output Path", interactive=True)
with gr.Tab("LoRA Settings"):
with gr.Row():
lora_steps = gr.Number(value=200, label="LoRA training steps", precision=0, interactive=True)
lora_lr = gr.Number(value=0.0002, label="LoRA learning rate", interactive=True)
lora_rank = gr.Number(value=16, label="LoRA rank", precision=0, interactive=True)
# save_lora_dir = gr.Text(value="./lora", label="LoRA model save path", interactive=True)
load_lora_path_0 = gr.Text(value="", label="LoRA model load path for image A", interactive=True)
load_lora_path_1 = gr.Text(value="", label="LoRA model load path for image B", interactive=True)
def store_img(img):
image = Image.fromarray(img).convert("RGB").resize((512,512), Image.BILINEAR)
# resize the input to 512x512
# image = image.resize((512,512), Image.BILINEAR)
# image = np.array(image)
# when new image is uploaded, `selected_points` should be empty
return image
input_img_0.upload(
store_img,
[input_img_0],
[original_image_0]
)
input_img_1.upload(
store_img,
[input_img_1],
[original_image_1]
)
def clear(LENGTH):
return gr.Image.update(value=None, width=LENGTH, height=LENGTH), \
gr.Image.update(value=None, width=LENGTH, height=LENGTH), \
None, None, None, None
clear_button.click(
clear,
[gr.Number(value=LENGTH, visible=False, precision=0)],
[input_img_0, input_img_1, original_image_0, original_image_1, prompt_0, prompt_1]
)
train_lora_0_button.click(
train_lora_interface,
[
original_image_0,
prompt_0,
model_path,
output_path,
lora_steps,
lora_rank,
lora_lr,
gr.Number(value=0, visible=False, precision=0)
],
[lora_progress_bar]
)
train_lora_1_button.click(
train_lora_interface,
[
original_image_1,
prompt_1,
model_path,
output_path,
lora_steps,
lora_rank,
lora_lr,
gr.Number(value=1, visible=False, precision=0)
],
[lora_progress_bar]
)
run_button.click(
run_diffmorpher,
[
original_image_0,
original_image_1,
prompt_0,
prompt_1,
model_path,
lora_mode,
lamb,
use_adain,
use_reschedule,
num_frames,
fps,
save_inter,
load_lora_path_0,
load_lora_path_1,
output_path
],
[output_video]
)
run_all_button.click(
run_all,
[
original_image_0,
original_image_1,
prompt_0,
prompt_1,
model_path,
lora_mode,
lamb,
use_adain,
use_reschedule,
num_frames,
fps,
save_inter,
load_lora_path_0,
load_lora_path_1,
output_path,
lora_steps,
lora_rank,
lora_lr
],
[output_video]
)
demo.queue().launch(debug=True)