DiffMorpher / main.py
qninhdt's picture
Upload 53 files
bf63092 verified
raw
history blame
3.21 kB
import os
import torch
import numpy as np
import cv2
from PIL import Image
from argparse import ArgumentParser
from model import DiffMorpherPipeline
parser = ArgumentParser()
parser.add_argument(
"--model_path", type=str, default="stabilityai/stable-diffusion-2-1-base",
help="Pretrained model to use (default: %(default)s)"
)
parser.add_argument(
"--image_path_0", type=str, default="",
help="Path of the first image (default: %(default)s)")
parser.add_argument(
"--prompt_0", type=str, default="",
help="Prompt of the second image (default: %(default)s)")
parser.add_argument(
"--image_path_1", type=str, default="",
help="Path of the first image (default: %(default)s)")
parser.add_argument(
"--prompt_1", type=str, default="",
help="Prompt of the second image (default: %(default)s)")
parser.add_argument(
"--output_path", type=str, default="./results",
help="Path of the output image (default: %(default)s)"
)
parser.add_argument(
"--save_lora_dir", type=str, default="./lora",
help="Path of the output lora directory (default: %(default)s)"
)
parser.add_argument(
"--load_lora_path_0", type=str, default="",
help="Path of the lora directory of the first image (default: %(default)s)"
)
parser.add_argument(
"--load_lora_path_1", type=str, default="",
help="Path of the lora directory of the second image (default: %(default)s)"
)
parser.add_argument(
"--use_adain", action="store_true",
help="Use AdaIN (default: %(default)s)"
)
parser.add_argument(
"--use_reschedule", action="store_true",
help="Use reschedule sampling (default: %(default)s)"
)
parser.add_argument(
"--lamb", type=float, default=0.6,
help="Lambda for self-attention replacement (default: %(default)s)"
)
parser.add_argument(
"--fix_lora_value", type=float, default=None,
help="Fix lora value (default: LoRA Interp., not fixed)"
)
parser.add_argument(
"--save_inter", action="store_true",
help="Save intermediate results (default: %(default)s)"
)
parser.add_argument(
"--num_frames", type=int, default=16,
help="Number of frames to generate (default: %(default)s)"
)
parser.add_argument(
"--duration", type=int, default=100,
help="Duration of each frame (default: %(default)s ms)"
)
parser.add_argument(
"--no_lora", action="store_true"
)
args = parser.parse_args()
os.makedirs(args.output_path, exist_ok=True)
pipeline = DiffMorpherPipeline.from_pretrained(
args.model_path, torch_dtype=torch.float32)
pipeline.to("cuda")
images = pipeline(
img_path_0=args.image_path_0,
img_path_1=args.image_path_1,
prompt_0=args.prompt_0,
prompt_1=args.prompt_1,
save_lora_dir=args.save_lora_dir,
load_lora_path_0=args.load_lora_path_0,
load_lora_path_1=args.load_lora_path_1,
use_adain=args.use_adain,
use_reschedule=args.use_reschedule,
lamd=args.lamb,
output_path=args.output_path,
num_frames=args.num_frames,
fix_lora=args.fix_lora_value,
save_intermediates=args.save_inter,
use_lora=not args.no_lora
)
images[0].save(f"{args.output_path}/output.gif", save_all=True,
append_images=images[1:], duration=args.duration, loop=0)