qilowoq commited on
Commit
0bdbd82
·
verified ·
1 Parent(s): 928ee7d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +72 -171
README.md CHANGED
@@ -1,201 +1,102 @@
1
  ---
2
- library_name: transformers
3
- tags: []
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
10
 
11
 
12
- ## Model Details
13
 
14
- ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
 
 
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
 
 
 
29
 
30
- <!-- Provide the basic links for the model. -->
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
- ## Uses
 
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
 
 
39
 
40
- ### Direct Use
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
 
 
 
 
43
 
44
- [More Information Needed]
45
 
46
- ### Downstream Use [optional]
 
47
 
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
 
 
49
 
50
- [More Information Needed]
 
51
 
52
- ### Out-of-Scope Use
 
 
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
 
55
 
56
- [More Information Needed]
 
 
57
 
58
- ## Bias, Risks, and Limitations
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
 
 
 
 
 
 
61
 
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
200
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
201
 
 
 
1
  ---
2
+ language: ["ru", "en"]
3
+
4
+ pipeline_tag: sentence-similarity
5
+ license: apache-2.0
6
+ tags:
7
+ - feature-extraction
8
+ - sentence-similarity
9
+ - transformers
10
  ---
11
 
12
+ # Model for English and Russian
13
 
14
+ This is a truncated version of [sentence-transformers/paraphrase-multilingual-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2).
15
 
16
+ This model has only English and Russian tokens left in the vocabulary. It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
17
 
18
 
19
+ ## Usage (Sentence-Transformers)
20
 
21
+ Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
22
 
23
+ ```
24
+ pip install -U sentence-transformers
25
+ ```
26
 
27
+ Then you can use the model like this:
28
 
29
+ ```python
30
+ from sentence_transformers import SentenceTransformer
31
+ sentences = ["This is an example sentence", "Each sentence is converted"]
 
 
 
 
32
 
33
+ model = SentenceTransformer('sentence-transformers/paraphrase-multilingual-mpnet-base-v2')
34
+ embeddings = model.encode(sentences)
35
+ print(embeddings)
36
+ ```
37
 
 
38
 
 
 
 
39
 
40
+ ## Usage (HuggingFace Transformers)
41
+ Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
42
 
43
+ ```python
44
+ from transformers import AutoTokenizer, AutoModel
45
+ import torch
46
 
 
47
 
48
+ #Mean Pooling - Take attention mask into account for correct averaging
49
+ def mean_pooling(model_output, attention_mask):
50
+ token_embeddings = model_output[0] #First element of model_output contains all token embeddings
51
+ input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
52
+ return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
53
 
 
54
 
55
+ # Sentences we want sentence embeddings for
56
+ sentences = ['This is an example sentence', 'Each sentence is converted']
57
 
58
+ # Load model from HuggingFace Hub
59
+ tokenizer = AutoTokenizer.from_pretrained('qilowoq/paraphrase-multilingual-mpnet-base-v2-en-ru')
60
+ model = AutoModel.from_pretrained('qilowoq/paraphrase-multilingual-mpnet-base-v2-en-ru')
61
 
62
+ # Tokenize sentences
63
+ encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
64
 
65
+ # Compute token embeddings
66
+ with torch.no_grad():
67
+ model_output = model(**encoded_input)
68
 
69
+ # Perform pooling. In this case, average pooling
70
+ sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
71
 
72
+ print("Sentence embeddings:")
73
+ print(sentence_embeddings)
74
+ ```
75
 
 
76
 
77
+ ## Full Model Architecture
78
+ ```
79
+ SentenceTransformer(
80
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
81
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
82
+ )
83
+ ```
84
 
85
+ ## Citing & Authors
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86
 
87
+ This model was trained by [sentence-transformers](https://www.sbert.net/).
88
+
89
+ If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084):
90
+ ```bibtex
91
+ @inproceedings{reimers-2019-sentence-bert,
92
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
93
+ author = "Reimers, Nils and Gurevych, Iryna",
94
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
95
+ month = "11",
96
+ year = "2019",
97
+ publisher = "Association for Computational Linguistics",
98
+ url = "http://arxiv.org/abs/1908.10084",
99
+ }
100
+ ```
101
 
102
+ The model has been truncated in [this notebook](https://colab.research.google.com/drive/19IFjWpJpxQie1gtHSvDeoKk7CQtpy6bT?usp=sharing).