Update README.md
Browse files
README.md
CHANGED
@@ -1,201 +1,102 @@
|
|
1 |
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
# Model
|
7 |
|
8 |
-
|
9 |
|
|
|
10 |
|
11 |
|
12 |
-
##
|
13 |
|
14 |
-
|
15 |
|
16 |
-
|
|
|
|
|
17 |
|
18 |
-
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
- **Model type:** [More Information Needed]
|
24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
25 |
-
- **License:** [More Information Needed]
|
26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
|
28 |
-
|
|
|
|
|
|
|
29 |
|
30 |
-
<!-- Provide the basic links for the model. -->
|
31 |
|
32 |
-
- **Repository:** [More Information Needed]
|
33 |
-
- **Paper [optional]:** [More Information Needed]
|
34 |
-
- **Demo [optional]:** [More Information Needed]
|
35 |
|
36 |
-
##
|
|
|
37 |
|
38 |
-
|
|
|
|
|
39 |
|
40 |
-
### Direct Use
|
41 |
|
42 |
-
|
|
|
|
|
|
|
|
|
43 |
|
44 |
-
[More Information Needed]
|
45 |
|
46 |
-
|
|
|
47 |
|
48 |
-
|
|
|
|
|
49 |
|
50 |
-
|
|
|
51 |
|
52 |
-
|
|
|
|
|
53 |
|
54 |
-
|
|
|
55 |
|
56 |
-
|
|
|
|
|
57 |
|
58 |
-
## Bias, Risks, and Limitations
|
59 |
|
60 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
-
|
63 |
-
|
64 |
-
### Recommendations
|
65 |
-
|
66 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
-
|
68 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
-
|
70 |
-
## How to Get Started with the Model
|
71 |
-
|
72 |
-
Use the code below to get started with the model.
|
73 |
-
|
74 |
-
[More Information Needed]
|
75 |
-
|
76 |
-
## Training Details
|
77 |
-
|
78 |
-
### Training Data
|
79 |
-
|
80 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
-
|
82 |
-
[More Information Needed]
|
83 |
-
|
84 |
-
### Training Procedure
|
85 |
-
|
86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
-
|
88 |
-
#### Preprocessing [optional]
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
200 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
201 |
|
|
|
|
1 |
---
|
2 |
+
language: ["ru", "en"]
|
3 |
+
|
4 |
+
pipeline_tag: sentence-similarity
|
5 |
+
license: apache-2.0
|
6 |
+
tags:
|
7 |
+
- feature-extraction
|
8 |
+
- sentence-similarity
|
9 |
+
- transformers
|
10 |
---
|
11 |
|
12 |
+
# Model for English and Russian
|
13 |
|
14 |
+
This is a truncated version of [sentence-transformers/paraphrase-multilingual-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2).
|
15 |
|
16 |
+
This model has only English and Russian tokens left in the vocabulary. It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
17 |
|
18 |
|
19 |
+
## Usage (Sentence-Transformers)
|
20 |
|
21 |
+
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
|
22 |
|
23 |
+
```
|
24 |
+
pip install -U sentence-transformers
|
25 |
+
```
|
26 |
|
27 |
+
Then you can use the model like this:
|
28 |
|
29 |
+
```python
|
30 |
+
from sentence_transformers import SentenceTransformer
|
31 |
+
sentences = ["This is an example sentence", "Each sentence is converted"]
|
|
|
|
|
|
|
|
|
32 |
|
33 |
+
model = SentenceTransformer('sentence-transformers/paraphrase-multilingual-mpnet-base-v2')
|
34 |
+
embeddings = model.encode(sentences)
|
35 |
+
print(embeddings)
|
36 |
+
```
|
37 |
|
|
|
38 |
|
|
|
|
|
|
|
39 |
|
40 |
+
## Usage (HuggingFace Transformers)
|
41 |
+
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
|
42 |
|
43 |
+
```python
|
44 |
+
from transformers import AutoTokenizer, AutoModel
|
45 |
+
import torch
|
46 |
|
|
|
47 |
|
48 |
+
#Mean Pooling - Take attention mask into account for correct averaging
|
49 |
+
def mean_pooling(model_output, attention_mask):
|
50 |
+
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
|
51 |
+
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
52 |
+
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
53 |
|
|
|
54 |
|
55 |
+
# Sentences we want sentence embeddings for
|
56 |
+
sentences = ['This is an example sentence', 'Each sentence is converted']
|
57 |
|
58 |
+
# Load model from HuggingFace Hub
|
59 |
+
tokenizer = AutoTokenizer.from_pretrained('qilowoq/paraphrase-multilingual-mpnet-base-v2-en-ru')
|
60 |
+
model = AutoModel.from_pretrained('qilowoq/paraphrase-multilingual-mpnet-base-v2-en-ru')
|
61 |
|
62 |
+
# Tokenize sentences
|
63 |
+
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
64 |
|
65 |
+
# Compute token embeddings
|
66 |
+
with torch.no_grad():
|
67 |
+
model_output = model(**encoded_input)
|
68 |
|
69 |
+
# Perform pooling. In this case, average pooling
|
70 |
+
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
|
71 |
|
72 |
+
print("Sentence embeddings:")
|
73 |
+
print(sentence_embeddings)
|
74 |
+
```
|
75 |
|
|
|
76 |
|
77 |
+
## Full Model Architecture
|
78 |
+
```
|
79 |
+
SentenceTransformer(
|
80 |
+
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
|
81 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
|
82 |
+
)
|
83 |
+
```
|
84 |
|
85 |
+
## Citing & Authors
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
|
87 |
+
This model was trained by [sentence-transformers](https://www.sbert.net/).
|
88 |
+
|
89 |
+
If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084):
|
90 |
+
```bibtex
|
91 |
+
@inproceedings{reimers-2019-sentence-bert,
|
92 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
93 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
94 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
95 |
+
month = "11",
|
96 |
+
year = "2019",
|
97 |
+
publisher = "Association for Computational Linguistics",
|
98 |
+
url = "http://arxiv.org/abs/1908.10084",
|
99 |
+
}
|
100 |
+
```
|
101 |
|
102 |
+
The model has been truncated in [this notebook](https://colab.research.google.com/drive/19IFjWpJpxQie1gtHSvDeoKk7CQtpy6bT?usp=sharing).
|