Upload model
Browse files- AbLang_bert_model.py +112 -0
- config.json +9 -7
- pytorch_model.bin +2 -2
AbLang_bert_model.py
ADDED
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers.models.bert.modeling_bert import BertEncoder, BertPooler, BertEmbeddings, BertForMaskedLM, MaskedLMOutput
|
2 |
+
from transformers import BertModel
|
3 |
+
from typing import List, Optional, Tuple, Union
|
4 |
+
import torch
|
5 |
+
|
6 |
+
class BertEmbeddingsV2(BertEmbeddings):
|
7 |
+
def __init__(self, config):
|
8 |
+
super().__init__(config)
|
9 |
+
self.pad_token_id = config.pad_token_id
|
10 |
+
self.position_embeddings = torch.nn.Embedding(config.max_position_embeddings, config.hidden_size, padding_idx=0) # here padding_idx is always 0
|
11 |
+
|
12 |
+
def forward(
|
13 |
+
self,
|
14 |
+
input_ids: torch.LongTensor,
|
15 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
16 |
+
position_ids: Optional[torch.LongTensor] = None,
|
17 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
18 |
+
past_key_values_length: int = 0,
|
19 |
+
) -> torch.Tensor:
|
20 |
+
inputs_embeds = self.word_embeddings(input_ids)
|
21 |
+
position_ids = self.create_position_ids_from_input_ids(input_ids)
|
22 |
+
position_embeddings = self.position_embeddings(position_ids)
|
23 |
+
embeddings = inputs_embeds + position_embeddings
|
24 |
+
return self.dropout(self.LayerNorm(embeddings))
|
25 |
+
|
26 |
+
def create_position_ids_from_input_ids(self, input_ids: torch.LongTensor) -> torch.Tensor:
|
27 |
+
mask = input_ids.ne(self.pad_token_id).int()
|
28 |
+
return torch.cumsum(mask, dim=1).long() * mask
|
29 |
+
|
30 |
+
|
31 |
+
class BertModelV2(BertModel):
|
32 |
+
def __init__(self, config):
|
33 |
+
super().__init__(config)
|
34 |
+
self.embeddings = BertEmbeddingsV2(config)
|
35 |
+
|
36 |
+
|
37 |
+
class BertForMaskedLMV2(BertForMaskedLM):
|
38 |
+
def __init__(self, config):
|
39 |
+
super().__init__(config)
|
40 |
+
|
41 |
+
def forward(
|
42 |
+
self,
|
43 |
+
input_ids: Optional[torch.Tensor] = None,
|
44 |
+
attention_mask: Optional[torch.Tensor] = None,
|
45 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
46 |
+
position_ids: Optional[torch.Tensor] = None,
|
47 |
+
head_mask: Optional[torch.Tensor] = None,
|
48 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
49 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
50 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
51 |
+
labels: Optional[torch.Tensor] = None,
|
52 |
+
output_attentions: Optional[bool] = None,
|
53 |
+
output_hidden_states: Optional[bool] = None,
|
54 |
+
return_dict: Optional[bool] = None,
|
55 |
+
) -> Union[Tuple[torch.Tensor], MaskedLMOutput]:
|
56 |
+
r"""
|
57 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
58 |
+
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
|
59 |
+
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
|
60 |
+
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
|
61 |
+
"""
|
62 |
+
|
63 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
64 |
+
|
65 |
+
outputs = self.bert(
|
66 |
+
input_ids,
|
67 |
+
attention_mask=attention_mask,
|
68 |
+
token_type_ids=token_type_ids,
|
69 |
+
position_ids=position_ids,
|
70 |
+
head_mask=head_mask,
|
71 |
+
inputs_embeds=inputs_embeds,
|
72 |
+
encoder_hidden_states=encoder_hidden_states,
|
73 |
+
encoder_attention_mask=encoder_attention_mask,
|
74 |
+
output_attentions=output_attentions,
|
75 |
+
output_hidden_states=output_hidden_states,
|
76 |
+
return_dict=return_dict,
|
77 |
+
)
|
78 |
+
|
79 |
+
sequence_output = outputs[0]
|
80 |
+
prediction_scores = sequence_output[:, :, 0:24]
|
81 |
+
|
82 |
+
masked_lm_loss = None
|
83 |
+
if labels is not None:
|
84 |
+
loss_fct = torch.nn.CrossEntropyLoss() # -100 index = padding token
|
85 |
+
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
|
86 |
+
|
87 |
+
if not return_dict:
|
88 |
+
output = (prediction_scores,) + outputs[2:]
|
89 |
+
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
|
90 |
+
|
91 |
+
return MaskedLMOutput(
|
92 |
+
loss=masked_lm_loss,
|
93 |
+
logits=prediction_scores,
|
94 |
+
hidden_states=outputs.hidden_states,
|
95 |
+
attentions=outputs.attentions,
|
96 |
+
)
|
97 |
+
|
98 |
+
def prepare_inputs_for_generation(self, input_ids, attention_mask=None, **model_kwargs):
|
99 |
+
input_shape = input_ids.shape
|
100 |
+
effective_batch_size = input_shape[0]
|
101 |
+
|
102 |
+
# add a dummy token
|
103 |
+
if self.config.pad_token_id is None:
|
104 |
+
raise ValueError("The PAD token should be defined for generation")
|
105 |
+
|
106 |
+
attention_mask = torch.cat([attention_mask, attention_mask.new_zeros((attention_mask.shape[0], 1))], dim=-1)
|
107 |
+
dummy_token = torch.full(
|
108 |
+
(effective_batch_size, 1), self.config.pad_token_id, dtype=torch.long, device=input_ids.device
|
109 |
+
)
|
110 |
+
input_ids = torch.cat([input_ids, dummy_token], dim=1)
|
111 |
+
|
112 |
+
return {"input_ids": input_ids, "attention_mask": attention_mask}
|
config.json
CHANGED
@@ -1,14 +1,13 @@
|
|
1 |
{
|
2 |
-
"
|
3 |
"architectures": [
|
4 |
-
"
|
5 |
],
|
6 |
"attention_probs_dropout_prob": 0.1,
|
7 |
"auto_map": {
|
8 |
-
"
|
9 |
-
"AutoModel": "model.AbLang"
|
10 |
},
|
11 |
-
"
|
12 |
"hidden_act": "gelu",
|
13 |
"hidden_dropout_prob": 0.1,
|
14 |
"hidden_size": 768,
|
@@ -19,8 +18,11 @@
|
|
19 |
"model_type": "bert",
|
20 |
"num_attention_heads": 12,
|
21 |
"num_hidden_layers": 12,
|
22 |
-
"
|
|
|
23 |
"torch_dtype": "float32",
|
24 |
-
"transformers_version": "4.
|
|
|
|
|
25 |
"vocab_size": 24
|
26 |
}
|
|
|
1 |
{
|
2 |
+
"add_pooling_layer": false,
|
3 |
"architectures": [
|
4 |
+
"BertModelV2"
|
5 |
],
|
6 |
"attention_probs_dropout_prob": 0.1,
|
7 |
"auto_map": {
|
8 |
+
"AutoModel": "AbLang_bert_model.BertModelV2"
|
|
|
9 |
},
|
10 |
+
"classifier_dropout": null,
|
11 |
"hidden_act": "gelu",
|
12 |
"hidden_dropout_prob": 0.1,
|
13 |
"hidden_size": 768,
|
|
|
18 |
"model_type": "bert",
|
19 |
"num_attention_heads": 12,
|
20 |
"num_hidden_layers": 12,
|
21 |
+
"pad_token_id": 21,
|
22 |
+
"position_embedding_type": "absolute",
|
23 |
"torch_dtype": "float32",
|
24 |
+
"transformers_version": "4.28.1",
|
25 |
+
"type_vocab_size": 2,
|
26 |
+
"use_cache": true,
|
27 |
"vocab_size": 24
|
28 |
}
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c9d5458446b8f723995df81e9b24b7a4635285fcb33d0d787a7e308bb16c75ea
|
3 |
+
size 343223341
|