Upload model
Browse files- AbLang_bert_model.py +72 -118
- pytorch_model.bin +2 -2
AbLang_bert_model.py
CHANGED
@@ -1,24 +1,29 @@
|
|
1 |
-
from transformers.models.bert.modeling_bert import BertEncoder, BertPooler, BertEmbeddings,
|
2 |
from transformers import BertModel
|
|
|
3 |
import torch
|
4 |
|
5 |
class BertEmbeddingsV2(BertEmbeddings):
|
6 |
def __init__(self, config):
|
7 |
super().__init__(config)
|
8 |
self.pad_token_id = config.pad_token_id
|
9 |
-
self.word_embeddings = torch.nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=self.pad_token_id)
|
10 |
self.position_embeddings = torch.nn.Embedding(config.max_position_embeddings, config.hidden_size, padding_idx=0) # here padding_idx is always 0
|
11 |
-
self.LayerNorm = torch.nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
12 |
-
self.dropout = torch.nn.Dropout(config.hidden_dropout_prob)
|
13 |
|
14 |
-
def forward(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
inputs_embeds = self.word_embeddings(input_ids)
|
16 |
position_ids = self.create_position_ids_from_input_ids(input_ids)
|
17 |
position_embeddings = self.position_embeddings(position_ids)
|
18 |
embeddings = inputs_embeds + position_embeddings
|
19 |
return self.dropout(self.LayerNorm(embeddings))
|
20 |
|
21 |
-
def create_position_ids_from_input_ids(self, input_ids):
|
22 |
mask = input_ids.ne(self.pad_token_id).int()
|
23 |
return torch.cumsum(mask, dim=1).long() * mask
|
24 |
|
@@ -26,133 +31,82 @@ class BertEmbeddingsV2(BertEmbeddings):
|
|
26 |
class BertModelV2(BertModel):
|
27 |
def __init__(self, config):
|
28 |
super().__init__(config)
|
29 |
-
self.config = config
|
30 |
self.embeddings = BertEmbeddingsV2(config)
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
|
|
|
|
35 |
def forward(
|
36 |
self,
|
37 |
-
input_ids=None,
|
38 |
-
attention_mask=None,
|
39 |
-
token_type_ids=None,
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
return_dict=None,
|
51 |
-
):
|
52 |
r"""
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
|
58 |
-
the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``:
|
59 |
-
- 1 for tokens that are **not masked**,
|
60 |
-
- 0 for tokens that are **masked**.
|
61 |
-
past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
62 |
-
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
63 |
-
If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids`
|
64 |
-
(those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)`
|
65 |
-
instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`.
|
66 |
-
use_cache (:obj:`bool`, `optional`):
|
67 |
-
If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up
|
68 |
-
decoding (see :obj:`past_key_values`).
|
69 |
"""
|
70 |
-
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
71 |
-
output_hidden_states = (
|
72 |
-
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
73 |
-
)
|
74 |
-
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
75 |
-
|
76 |
-
if self.config.is_decoder:
|
77 |
-
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
78 |
-
else:
|
79 |
-
use_cache = False
|
80 |
-
|
81 |
-
if input_ids is not None and inputs_embeds is not None:
|
82 |
-
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
83 |
-
elif input_ids is not None:
|
84 |
-
input_shape = input_ids.size()
|
85 |
-
batch_size, seq_length = input_shape
|
86 |
-
elif inputs_embeds is not None:
|
87 |
-
input_shape = inputs_embeds.size()[:-1]
|
88 |
-
batch_size, seq_length = input_shape
|
89 |
-
else:
|
90 |
-
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
91 |
-
|
92 |
-
dev = input_ids.device if input_ids is not None else inputs_embeds.device
|
93 |
-
|
94 |
-
# past_key_values_length
|
95 |
-
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
|
96 |
-
|
97 |
-
if attention_mask is None:
|
98 |
-
attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=dev)
|
99 |
-
if token_type_ids is None:
|
100 |
-
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=dev)
|
101 |
|
102 |
-
|
103 |
-
# ourselves in which case we just need to make it broadcastable to all heads.
|
104 |
-
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape, dev)
|
105 |
-
|
106 |
-
# If a 2D or 3D attention mask is provided for the cross-attention
|
107 |
-
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
108 |
-
if self.config.is_decoder and encoder_hidden_states is not None:
|
109 |
-
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
|
110 |
-
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
|
111 |
-
if encoder_attention_mask is None:
|
112 |
-
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=dev)
|
113 |
-
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
|
114 |
-
else:
|
115 |
-
encoder_extended_attention_mask = None
|
116 |
-
|
117 |
-
# Prepare head mask if needed
|
118 |
-
# 1.0 in head_mask indicate we keep the head
|
119 |
-
# attention_probs has shape bsz x n_heads x N x N
|
120 |
-
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
121 |
-
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
122 |
-
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
123 |
|
124 |
-
|
125 |
-
input_ids
|
126 |
-
|
127 |
token_type_ids=token_type_ids,
|
128 |
-
|
129 |
-
inputs_embeds=inputs_embeds,
|
130 |
-
past_key_values_length=past_key_values_length,
|
131 |
-
)
|
132 |
-
encoder_outputs = self.encoder(
|
133 |
-
embedding_output,
|
134 |
-
attention_mask=extended_attention_mask,
|
135 |
head_mask=head_mask,
|
|
|
136 |
encoder_hidden_states=encoder_hidden_states,
|
137 |
-
encoder_attention_mask=
|
138 |
-
past_key_values=past_key_values,
|
139 |
-
use_cache=use_cache,
|
140 |
output_attentions=output_attentions,
|
141 |
output_hidden_states=output_hidden_states,
|
142 |
return_dict=return_dict,
|
143 |
)
|
144 |
-
|
145 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
146 |
|
147 |
if not return_dict:
|
148 |
-
|
|
|
149 |
|
150 |
-
return
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
attentions=encoder_outputs.attentions,
|
156 |
-
cross_attentions=encoder_outputs.cross_attentions,
|
157 |
)
|
158 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers.models.bert.modeling_bert import BertEncoder, BertPooler, BertEmbeddings, BertForMaskedLM, MaskedLMOutput
|
2 |
from transformers import BertModel
|
3 |
+
from typing import List, Optional, Tuple, Union
|
4 |
import torch
|
5 |
|
6 |
class BertEmbeddingsV2(BertEmbeddings):
|
7 |
def __init__(self, config):
|
8 |
super().__init__(config)
|
9 |
self.pad_token_id = config.pad_token_id
|
|
|
10 |
self.position_embeddings = torch.nn.Embedding(config.max_position_embeddings, config.hidden_size, padding_idx=0) # here padding_idx is always 0
|
|
|
|
|
11 |
|
12 |
+
def forward(
|
13 |
+
self,
|
14 |
+
input_ids: torch.LongTensor,
|
15 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
16 |
+
position_ids: Optional[torch.LongTensor] = None,
|
17 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
18 |
+
past_key_values_length: int = 0,
|
19 |
+
) -> torch.Tensor:
|
20 |
inputs_embeds = self.word_embeddings(input_ids)
|
21 |
position_ids = self.create_position_ids_from_input_ids(input_ids)
|
22 |
position_embeddings = self.position_embeddings(position_ids)
|
23 |
embeddings = inputs_embeds + position_embeddings
|
24 |
return self.dropout(self.LayerNorm(embeddings))
|
25 |
|
26 |
+
def create_position_ids_from_input_ids(self, input_ids: torch.LongTensor) -> torch.Tensor:
|
27 |
mask = input_ids.ne(self.pad_token_id).int()
|
28 |
return torch.cumsum(mask, dim=1).long() * mask
|
29 |
|
|
|
31 |
class BertModelV2(BertModel):
|
32 |
def __init__(self, config):
|
33 |
super().__init__(config)
|
|
|
34 |
self.embeddings = BertEmbeddingsV2(config)
|
35 |
+
|
36 |
+
|
37 |
+
class BertForMaskedLMV2(BertForMaskedLM):
|
38 |
+
def __init__(self, config):
|
39 |
+
super().__init__(config)
|
40 |
+
|
41 |
def forward(
|
42 |
self,
|
43 |
+
input_ids: Optional[torch.Tensor] = None,
|
44 |
+
attention_mask: Optional[torch.Tensor] = None,
|
45 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
46 |
+
position_ids: Optional[torch.Tensor] = None,
|
47 |
+
head_mask: Optional[torch.Tensor] = None,
|
48 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
49 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
50 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
51 |
+
labels: Optional[torch.Tensor] = None,
|
52 |
+
output_attentions: Optional[bool] = None,
|
53 |
+
output_hidden_states: Optional[bool] = None,
|
54 |
+
return_dict: Optional[bool] = None,
|
55 |
+
) -> Union[Tuple[torch.Tensor], MaskedLMOutput]:
|
|
|
|
|
56 |
r"""
|
57 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
58 |
+
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
|
59 |
+
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
|
60 |
+
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
+
outputs = self.bert(
|
66 |
+
input_ids,
|
67 |
+
attention_mask=attention_mask,
|
68 |
token_type_ids=token_type_ids,
|
69 |
+
position_ids=position_ids,
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
head_mask=head_mask,
|
71 |
+
inputs_embeds=inputs_embeds,
|
72 |
encoder_hidden_states=encoder_hidden_states,
|
73 |
+
encoder_attention_mask=encoder_attention_mask,
|
|
|
|
|
74 |
output_attentions=output_attentions,
|
75 |
output_hidden_states=output_hidden_states,
|
76 |
return_dict=return_dict,
|
77 |
)
|
78 |
+
|
79 |
+
sequence_output = outputs[0]
|
80 |
+
prediction_scores = sequence_output[:, :, 0:24]
|
81 |
+
|
82 |
+
masked_lm_loss = None
|
83 |
+
if labels is not None:
|
84 |
+
loss_fct = torch.nn.CrossEntropyLoss() # -100 index = padding token
|
85 |
+
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
|
86 |
|
87 |
if not return_dict:
|
88 |
+
output = (prediction_scores,) + outputs[2:]
|
89 |
+
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
|
90 |
|
91 |
+
return MaskedLMOutput(
|
92 |
+
loss=masked_lm_loss,
|
93 |
+
logits=prediction_scores,
|
94 |
+
hidden_states=outputs.hidden_states,
|
95 |
+
attentions=outputs.attentions,
|
|
|
|
|
96 |
)
|
97 |
+
|
98 |
+
def prepare_inputs_for_generation(self, input_ids, attention_mask=None, **model_kwargs):
|
99 |
+
input_shape = input_ids.shape
|
100 |
+
effective_batch_size = input_shape[0]
|
101 |
+
|
102 |
+
# add a dummy token
|
103 |
+
if self.config.pad_token_id is None:
|
104 |
+
raise ValueError("The PAD token should be defined for generation")
|
105 |
+
|
106 |
+
attention_mask = torch.cat([attention_mask, attention_mask.new_zeros((attention_mask.shape[0], 1))], dim=-1)
|
107 |
+
dummy_token = torch.full(
|
108 |
+
(effective_batch_size, 1), self.config.pad_token_id, dtype=torch.long, device=input_ids.device
|
109 |
+
)
|
110 |
+
input_ids = torch.cat([input_ids, dummy_token], dim=1)
|
111 |
+
|
112 |
+
return {"input_ids": input_ids, "attention_mask": attention_mask}
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f1df129a33dc579997effd90fb6ff33b8bcd2f2619fc2726cc524e02f71f4f3e
|
3 |
+
size 343223341
|