xiechunyu commited on
Commit
094ff22
·
1 Parent(s): daa00c6

upload first

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,201 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ library_name: transformers
5
+ license: apache-2.0
6
+ pipeline_tag: zero-shot-image-classification
7
+ tags:
8
+ - clip
9
+ ---
10
+
11
+ # FG-CLIP 2: A BILINGUAL FINE-GRAINED VISION LANGUAGE ALIGNMENT MODEL
12
+ Code: https://github.com/360CVGroup/FG-CLIP
13
+
14
+ FG-CLIP 2 is the foundation model for fine-grained vision-language understanding in both English and Chinese.
15
+ Across 29 datasets and 8 diverse tasks, it consistently surpasses recent strong baselines such as SigLIP 2 and MetaCLIP 2, achieving the best reported performance to date in both languages.
16
+
17
+ **[FG-CLIP 2: A BILINGUAL FINE-GRAINED VISION LANGUAGE ALIGNMENT MODEL](https://arxiv.org/abs/2510.10921)**
18
+ </br>
19
+ Chunyu Xie*, Bin Wang*, Fanjing Kong, Jincheng Li, Dawei Liang, Ji Ao, Dawei Leng†, Yuhui Yin(*Equal Contribution, ✝Corresponding Author)
20
+ [![arXiv](https://img.shields.io/badge/arXiv-2510.10921-b31b1b.svg)](https://arxiv.org/abs/2510.10921)
21
+ [![HF-model](https://img.shields.io/badge/Model-Collection🤗-yellow.svg)](https://huggingface.co/collections/qihoo360/fg-clip-2-68ecbf9c548623bb78bc7913)
22
+ [![HF-data](https://img.shields.io/badge/Benchmark-Collection🤗-yellow.svg)](https://huggingface.co/collections/qihoo360/fg-clip-2-68ecbf9c548623bb78bc7913)
23
+ [![API+MCP](https://img.shields.io/badge/API/MCP-FG--CLIPv2-green.svg)](https://research.360.cn/sass/index)
24
+ </br>
25
+
26
+ ## Quick Start 🤗
27
+
28
+ ### Load Model
29
+ ```Shell
30
+ import torch
31
+ from PIL import Image
32
+ from transformers import (
33
+ AutoImageProcessor,
34
+ AutoTokenizer,
35
+ AutoModelForCausalLM,
36
+ )
37
+
38
+
39
+ model_root = "fgclip2-base-patch16"
40
+ model = AutoModelForCausalLM.from_pretrained(model_root,trust_remote_code=True).cuda()
41
+
42
+ device = model.device
43
+
44
+ tokenizer = AutoTokenizer.from_pretrained(model_root)
45
+ image_processor = AutoImageProcessor.from_pretrained(model_root)
46
+
47
+ ```
48
+
49
+
50
+ ### Retrieval
51
+
52
+ ```Shell
53
+ def determine_max_value(image):
54
+
55
+ w,h = image.size
56
+ max_val = (w//16)*(h//16)
57
+
58
+ if max_val > 784:
59
+ return 1024
60
+ elif max_val > 576:
61
+ return 784
62
+ elif max_val > 256:
63
+ return 576
64
+ elif max_val > 128:
65
+ return 256
66
+ else:
67
+ return 128
68
+
69
+ img_root = "cat_dfclor.jpg"
70
+ image = Image.open(img_root).convert("RGB")
71
+
72
+ image_input = image_processor(images=image, max_num_patches=determine_max_value(image), return_tensors="pt").to(device)
73
+
74
+ # NOTE Short captions: max_length=64
75
+
76
+ captions = ["a photo of two cats", "a photo of a cat"]
77
+ captions = [caption.lower() for caption in captions]
78
+
79
+ caption_input = tokenizer(captions, padding="max_length", max_length=64, truncation=True, return_tensors="pt").to(device)
80
+
81
+
82
+ with torch.no_grad():
83
+ image_feature = model.get_image_features(**image_input)
84
+ text_feature = model.get_text_features(**caption_input)
85
+ image_feature = image_feature / image_feature.norm(p=2, dim=-1, keepdim=True)
86
+ text_feature = text_feature / text_feature.norm(p=2, dim=-1, keepdim=True)
87
+
88
+ logits_per_image = image_feature @ text_feature.T
89
+ logit_scale, logit_bias = model.logit_scale.to(text_feature.device), model.logit_bias.to(text_feature.device)
90
+ logits_per_image = logits_per_image * logit_scale.exp() + logit_bias
91
+ probs = torch.sigmoid(logits_per_image)
92
+ # [[0.5322, 0.0048]]
93
+ print(probs)
94
+
95
+ ```
96
+
97
+ ### Dense feature effect display
98
+
99
+ ```Shell
100
+
101
+ import math
102
+ import matplotlib
103
+ matplotlib.use('Agg')
104
+ import matplotlib.pyplot as plt
105
+
106
+
107
+ img_root = "cat_dfclor.jpg"
108
+ image = Image.open(img_root).convert("RGB")
109
+ image = resize_short_edge(image,target_size=2048)
110
+
111
+ image_input = image_processor(images=image, max_num_patches=16384, return_tensors="pt").to(device)
112
+ captions = ["电脑","黑猫","窗户","window","white cat","book"]
113
+
114
+ with torch.no_grad():
115
+ dense_image_feature = model.get_image_dense_feature(**image_input)
116
+
117
+ spatial_values = image_input["spatial_shapes"][0]
118
+ real_h = spatial_values[0].item()
119
+ real_w = spatial_values[1].item()
120
+ real_pixel_tokens_num = real_w*real_h
121
+ dense_image_feature = dense_image_feature[0][:real_pixel_tokens_num]
122
+
123
+
124
+ captions = [caption.lower() for caption in captions]
125
+ caption_input = tokenizer(captions, padding="max_length", max_length=64, truncation=True, return_tensors="pt").to(device)
126
+
127
+ text_feature = model.get_text_features(**caption_input, walk_type="box")
128
+ text_feature = text_feature / text_feature.norm(p=2, dim=-1, keepdim=True)
129
+ dense_image_feature = dense_image_feature / dense_image_feature.norm(p=2, dim=-1, keepdim=True)
130
+
131
+ similarity = dense_image_feature @ text_feature.T
132
+ similarity = similarity.cpu()
133
+
134
+
135
+ num_classes = len(captions)
136
+ cols = 3
137
+ rows = (num_classes + cols - 1) // cols
138
+
139
+
140
+ aspect_ratio = real_w / real_h
141
+
142
+ fig_width_inch = 3 * cols
143
+ fig_height_inch = fig_width_inch / aspect_ratio * rows / cols
144
+
145
+ fig, axes = plt.subplots(rows, cols, figsize=(fig_width_inch, fig_height_inch))
146
+ fig.subplots_adjust(wspace=0.01, hspace=0.01)
147
+
148
+ if num_classes == 1:
149
+ axes = [axes]
150
+ else:
151
+ axes = axes.flatten()
152
+
153
+ for cls_index in range(num_classes):
154
+ similarity_map = similarity[:, cls_index].cpu().numpy()
155
+ show_image = similarity_map.reshape((real_h, real_w))
156
+
157
+ ax = axes[cls_index]
158
+ ax.imshow(show_image, cmap='viridis', aspect='equal')
159
+ ax.set_xticks([])
160
+ ax.set_yticks([])
161
+ ax.axis('off')
162
+
163
+
164
+ for idx in range(num_classes, len(axes)):
165
+ axes[idx].axis('off')
166
+
167
+ savename = "FGCLIP2_dfcolor_cat_all_2K.png"
168
+ plt.savefig(savename, dpi=150, bbox_inches='tight', pad_inches=0.05)
169
+ plt.close()
170
+ ```
171
+
172
+ <p align="left">
173
+ <img src="FGCLIP2_dfcolor_cat_all_2K.png" width=50%/>
174
+ </p>
175
+
176
+ ## Citation
177
+ If you find FG-CLIP 2 useful for your research and applications, please cite using this BibTeX:
178
+
179
+ ```
180
+ @article{xie2025fg2,
181
+ title={FG-CLIP 2: A Bilingual Fine-grained Vision-language Alignment Model},
182
+ author={Xie, Chunyu and Wang, Bin and Kong, Fanjing and Li, Jincheng and Liang, Dawei and Ao, Ji and Leng, Dawei and Yin, Yuhui},
183
+ journal={arXiv preprint arXiv:2510.10921},
184
+ year={2025}
185
+ }
186
+ ```
187
+ ```
188
+ @article{xie2025fg,
189
+ title={FG-CLIP: Fine-Grained Visual and Textual Alignment},
190
+ author={Xie, Chunyu and Wang, Bin and Kong, Fanjing and Li, Jincheng and Liang, Dawei and Zhang, Gengshen and Leng, Dawei and Yin, Yuhui},
191
+ journal={arXiv preprint arXiv:2505.05071},
192
+ year={2025}
193
+ }
194
+ ```
195
+
196
+
197
+
198
+ ## License
199
+
200
+ This project utilizes certain datasets and checkpoints that are subject to their respective original licenses. Users must comply with all terms and conditions of these original licenses.
201
+ The content of this project itself is licensed under the [Apache license 2.0](./LICENSE).
config.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "Fgclip2Model"
4
+ ],
5
+ "auto_map": {
6
+ "AutoConfig": "modeling_fgclip2.Fgclip2Config",
7
+ "AutoModelForCausalLM": "modeling_fgclip2.Fgclip2Model"
8
+ },
9
+ "dtype": "float32",
10
+ "initializer_factor": 1.0,
11
+ "model_type": "fgclip2",
12
+ "text_config": {
13
+ "attention_dropout": 0.0,
14
+ "dtype": "float32",
15
+ "hidden_act": "gelu_pytorch_tanh",
16
+ "hidden_size": 768,
17
+ "intermediate_size": 3072,
18
+ "keep_len": 20,
19
+ "layer_norm_eps": 1e-06,
20
+ "longtext_len": 196,
21
+ "max_position_embeddings": 64,
22
+ "model_type": "fgclip2_text_model",
23
+ "num_attention_heads": 12,
24
+ "num_hidden_layers": 12,
25
+ "projection_size": 768,
26
+ "vocab_size": 256000
27
+ },
28
+ "transformers_version": "4.57.0.dev0",
29
+ "vision_config": {
30
+ "attention_dropout": 0.0,
31
+ "dtype": "float32",
32
+ "hidden_act": "gelu_pytorch_tanh",
33
+ "hidden_size": 768,
34
+ "intermediate_size": 3072,
35
+ "layer_norm_eps": 1e-06,
36
+ "model_type": "fgclip2_vision_model",
37
+ "num_attention_heads": 12,
38
+ "num_channels": 3,
39
+ "num_hidden_layers": 12,
40
+ "num_patches": 256,
41
+ "patch_size": 16
42
+ }
43
+ }
configuration_fgclip2.py ADDED
@@ -0,0 +1,274 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
2
+ # This file was automatically generated from src/transformers/models/fgclip2/modular_fgclip2.py.
3
+ # Do NOT edit this file manually as any edits will be overwritten by the generation of
4
+ # the file from the modular. If any change should be done, please apply the change to the
5
+ # modular_fgclip2.py file directly. One of our CI enforces this.
6
+ # 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
7
+ # coding=utf-8
8
+ # Copyright 2025 The HuggingFace Inc. team.
9
+ #
10
+ # Licensed under the Apache License, Version 2.0 (the "License");
11
+ # you may not use this file except in compliance with the License.
12
+ # You may obtain a copy of the License at
13
+ #
14
+ # http://www.apache.org/licenses/LICENSE-2.0
15
+ #
16
+ # Unless required by applicable law or agreed to in writing, software
17
+ # distributed under the License is distributed on an "AS IS" BASIS,
18
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
19
+ # See the License for the specific language governing permissions and
20
+ # limitations under the License.
21
+ from transformers.configuration_utils import PretrainedConfig
22
+ from transformers.utils import logging
23
+
24
+
25
+ logger = logging.get_logger(__name__)
26
+
27
+
28
+ class Fgclip2TextConfig(PretrainedConfig):
29
+ r"""
30
+ This is the configuration class to store the configuration of a [`Fgclip2TextModel`]. It is used to instantiate a
31
+ Fgclip2 text encoder according to the specified arguments, defining the model architecture. Instantiating a
32
+ configuration with the defaults will yield a similar configuration to that of the text encoder of the Fgclip2
33
+ [qihoo360/fg-clip2-base](https://huggingface.co/qihoo360/fg-clip2-base) architecture.
34
+
35
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
36
+ documentation from [`PretrainedConfig`] for more information.
37
+
38
+ Args:
39
+ vocab_size (`int`, *optional*, defaults to 32000):
40
+ Vocabulary size of the Fgclip2 text model. Defines the number of different tokens that can be represented by
41
+ the `inputs_ids` passed when calling [`Fgclip2Model`].
42
+ hidden_size (`int`, *optional*, defaults to 768):
43
+ Dimensionality of the encoder layers and the pooler layer.
44
+ intermediate_size (`int`, *optional*, defaults to 3072):
45
+ Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
46
+ num_hidden_layers (`int`, *optional*, defaults to 12):
47
+ Number of hidden layers in the Transformer encoder.
48
+ num_attention_heads (`int`, *optional*, defaults to 12):
49
+ Number of attention heads for each attention layer in the Transformer encoder.
50
+ max_position_embeddings (`int`, *optional*, defaults to 64):
51
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
52
+ just in case (e.g., 512 or 1024 or 2048).
53
+ hidden_act (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`):
54
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
55
+ `"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported.
56
+ layer_norm_eps (`float`, *optional*, defaults to 1e-06):
57
+ The epsilon used by the layer normalization layers.
58
+ attention_dropout (`float`, *optional*, defaults to 0.0):
59
+ The dropout ratio for the attention probabilities.
60
+ pad_token_id (`int`, *optional*, defaults to 1):
61
+ The id of the padding token in the vocabulary.
62
+ bos_token_id (`int`, *optional*, defaults to 49406):
63
+ The id of the beginning-of-sequence token in the vocabulary.
64
+ eos_token_id (`int`, *optional*, defaults to 49407):
65
+ The id of the end-of-sequence token in the vocabulary.
66
+ projection_size (`int`, *optional*, defaults to `hidden_size`):
67
+ The size of the projection head.
68
+ keep_len (`int`, *optional*, defaults to 20):
69
+ When processing long texts, the retained tokens are used for handling short text lengths.
70
+ For details, please refer to the FG-CLIP 'https://arxiv.org/abs/2505.05071' paper.
71
+ longtext_len (`int`, *optional*, defaults to 196):
72
+ The maximum number of tokens in long texts that can be processed
73
+
74
+
75
+ Example:
76
+
77
+ ```python
78
+ >>> from transformers import Fgclip2TextConfig, Fgclip2TextModel
79
+
80
+ >>> # Initializing a Fgclip2TextConfig with qihoo/fgclip2-base-patch16 style configuration
81
+ >>> configuration = Fgclip2TextConfig()
82
+
83
+ >>> # Initializing a Fgclip2TextModel (with random weights) from the qihoo/fgclip2-base-patch16 style configuration
84
+ >>> model = Fgclip2TextModel(configuration)
85
+
86
+ >>> # Accessing the model configuration
87
+ >>> configuration = model.config
88
+ ```"""
89
+
90
+ model_type = "fgclip2_text_model"
91
+ base_config_key = "text_config"
92
+
93
+ def __init__(
94
+ self,
95
+ vocab_size=32000,
96
+ hidden_size=768,
97
+ intermediate_size=3072,
98
+ num_hidden_layers=12,
99
+ num_attention_heads=12,
100
+ max_position_embeddings=64,
101
+ hidden_act="gelu_pytorch_tanh",
102
+ layer_norm_eps=1e-6,
103
+ attention_dropout=0.0,
104
+ # This differs from `CLIPTokenizer`'s default and from openai/fgclip2
105
+ # See https://github.com/huggingface/transformers/pull/24773#issuecomment-1632287538
106
+ pad_token_id=1,
107
+ bos_token_id=49406,
108
+ eos_token_id=49407,
109
+ projection_size=None,
110
+ keep_len=20,
111
+ longtext_len=196,
112
+ **kwargs,
113
+ ):
114
+ super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
115
+
116
+ self.vocab_size = vocab_size
117
+ self.hidden_size = hidden_size
118
+ self.intermediate_size = intermediate_size
119
+ self.num_hidden_layers = num_hidden_layers
120
+ self.num_attention_heads = num_attention_heads
121
+ self.max_position_embeddings = max_position_embeddings
122
+ self.layer_norm_eps = layer_norm_eps
123
+ self.hidden_act = hidden_act
124
+ self.attention_dropout = attention_dropout
125
+ self.projection_size = projection_size if projection_size is not None else hidden_size
126
+ self.keep_len = keep_len
127
+ self.longtext_len = longtext_len
128
+
129
+
130
+ class Fgclip2VisionConfig(PretrainedConfig):
131
+ r"""
132
+ This is the configuration class to store the configuration of a [`Fgclip2VisionModel`]. It is used to instantiate a
133
+ Fgclip2 vision encoder according to the specified arguments, defining the model architecture. Instantiating a
134
+ configuration with the defaults will yield a similar configuration to that of the vision encoder of the Fgclip2
135
+ [qihoo/fgclip2-base-patch16](https://huggingface.co/qihoo/fgclip2-base-patch16) architecture.
136
+
137
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
138
+ documentation from [`PretrainedConfig`] for more information.
139
+
140
+ Args:
141
+ hidden_size (`int`, *optional*, defaults to 768):
142
+ Dimensionality of the encoder layers and the pooler layer.
143
+ intermediate_size (`int`, *optional*, defaults to 3072):
144
+ Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
145
+ num_hidden_layers (`int`, *optional*, defaults to 12):
146
+ Number of hidden layers in the Transformer encoder.
147
+ num_attention_heads (`int`, *optional*, defaults to 12):
148
+ Number of attention heads for each attention layer in the Transformer encoder.
149
+ num_channels (`int`, *optional*, defaults to 3):
150
+ Number of channels in the input images.
151
+ num_patches (`int`, *optional*, defaults to 256):
152
+ The number of patches in the image with the size of (`patch_size`, `patch_size`).
153
+ The image is resized to fill maximum of this number of patches, and to preserve
154
+ the aspect ratio. In case the resulted number of patches is lower, the image is
155
+ padded in "patch" dimension.
156
+ patch_size (`int`, *optional*, defaults to 16):
157
+ The size (resolution) of each patch.
158
+ hidden_act (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`):
159
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
160
+ `"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported.
161
+ layer_norm_eps (`float`, *optional*, defaults to 1e-06):
162
+ The epsilon used by the layer normalization layers.
163
+ attention_dropout (`float`, *optional*, defaults to 0.0):
164
+ The dropout ratio for the attention probabilities.
165
+
166
+ Example:
167
+
168
+ ```python
169
+ >>> from transformers import Fgclip2VisionConfig, Fgclip2VisionModel
170
+
171
+ >>> # Initializing a Fgclip2VisionConfig with qihoo/fgclip2-base-patch16 style configuration
172
+ >>> configuration = Fgclip2VisionConfig()
173
+
174
+ >>> # Initializing a Fgclip2VisionModel (with random weights) from the qihoo/fgclip2-base-patch16 style configuration
175
+ >>> model = Fgclip2VisionModel(configuration)
176
+
177
+ >>> # Accessing the model configuration
178
+ >>> configuration = model.config
179
+ ```"""
180
+
181
+ model_type = "fgclip2_vision_model"
182
+ base_config_key = "vision_config"
183
+
184
+ def __init__(
185
+ self,
186
+ hidden_size=768,
187
+ intermediate_size=3072,
188
+ num_hidden_layers=12,
189
+ num_attention_heads=12,
190
+ num_channels=3,
191
+ num_patches=256,
192
+ patch_size=16,
193
+ hidden_act="gelu_pytorch_tanh",
194
+ layer_norm_eps=1e-6,
195
+ attention_dropout=0.0,
196
+ **kwargs,
197
+ ):
198
+ super().__init__(**kwargs)
199
+
200
+ self.hidden_size = hidden_size
201
+ self.intermediate_size = intermediate_size
202
+ self.num_hidden_layers = num_hidden_layers
203
+ self.num_attention_heads = num_attention_heads
204
+ self.num_channels = num_channels
205
+ self.patch_size = patch_size
206
+ self.attention_dropout = attention_dropout
207
+ self.layer_norm_eps = layer_norm_eps
208
+ self.hidden_act = hidden_act
209
+ self.num_patches = num_patches
210
+
211
+
212
+ class Fgclip2Config(PretrainedConfig):
213
+ r"""
214
+ [`Fgclip2Config`] is the configuration class to store the configuration of a [`Fgclip2Model`]. It is used to
215
+ instantiate a Fgclip2 model according to the specified arguments, defining the text model and vision model configs.
216
+ Instantiating a configuration with the defaults will yield a similar configuration to that of the Fgclip2
217
+ [qihoo/fgclip2-base-patch16](https://huggingface.co/qihoo/fgclip2-base-patch16) architecture.
218
+
219
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
220
+ documentation from [`PretrainedConfig`] for more information.
221
+
222
+ Args:
223
+ text_config (`dict`, *optional*):
224
+ Dictionary of configuration options used to initialize [`Fgclip2TextConfig`].
225
+ vision_config (`dict`, *optional*):
226
+ Dictionary of configuration options used to initialize [`Fgclip2VisionConfig`].
227
+ kwargs (*optional*):
228
+ Dictionary of keyword arguments.
229
+
230
+ Example:
231
+
232
+ ```python
233
+ >>> from transformers import Fgclip2Config, Fgclip2Model
234
+
235
+ >>> # Initializing a Fgclip2Config with qihoo/fgclip2-base-patch16 style configuration
236
+ >>> configuration = Fgclip2Config()
237
+
238
+ >>> # Initializing a Fgclip2Model (with random weights) from the qihoo/fgclip2-base-patch16 style configuration
239
+ >>> model = Fgclip2Model(configuration)
240
+
241
+ >>> # Accessing the model configuration
242
+ >>> configuration = model.config
243
+
244
+ >>> # We can also initialize a Fgclip2Config from a Fgclip2TextConfig and a Fgclip2VisionConfig
245
+ >>> from transformers import Fgclip2TextConfig, Fgclip2VisionConfig
246
+
247
+ >>> # Initializing a Fgclip2Text and Fgclip2Vision configuration
248
+ >>> config_text = Fgclip2TextConfig()
249
+ >>> config_vision = Fgclip2VisionConfig()
250
+
251
+ >>> config = Fgclip2Config.from_text_vision_configs(config_text, config_vision)
252
+ ```"""
253
+
254
+ model_type = "fgclip2"
255
+ sub_configs = {"text_config": Fgclip2TextConfig, "vision_config": Fgclip2VisionConfig}
256
+
257
+ def __init__(self, text_config=None, vision_config=None, **kwargs):
258
+ super().__init__(**kwargs)
259
+
260
+ if text_config is None:
261
+ text_config = {}
262
+ logger.info("`text_config` is `None`. Initializing the `Fgclip2TextConfig` with default values.")
263
+
264
+ if vision_config is None:
265
+ vision_config = {}
266
+ logger.info("`vision_config` is `None`. initializing the `Fgclip2VisionConfig` with default values.")
267
+
268
+ self.text_config = Fgclip2TextConfig(**text_config)
269
+ self.vision_config = Fgclip2VisionConfig(**vision_config)
270
+
271
+ self.initializer_factor = 1.0
272
+
273
+
274
+ __all__ = ["Fgclip2Config", "Fgclip2TextConfig", "Fgclip2VisionConfig"]
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5328bf1538afb4b7f4aa844f749655285d0d79490f31a25aeefc5603d9b173fe
3
+ size 1535264416
modeling_fgclip2.py ADDED
@@ -0,0 +1,1400 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
2
+ # This file was automatically generated from src/transformers/models/fgclip2/modular_fgclip2.py.
3
+ # Do NOT edit this file manually as any edits will be overwritten by the generation of
4
+ # the file from the modular. If any change should be done, please apply the change to the
5
+ # modular_fgclip2.py file directly. One of our CI enforces this.
6
+ # 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
7
+ # coding=utf-8
8
+ # Copyright 2025 The HuggingFace Inc. team.
9
+ #
10
+ # Licensed under the Apache License, Version 2.0 (the "License");
11
+ # you may not use this file except in compliance with the License.
12
+ # You may obtain a copy of the License at
13
+ #
14
+ # http://www.apache.org/licenses/LICENSE-2.0
15
+ #
16
+ # Unless required by applicable law or agreed to in writing, software
17
+ # distributed under the License is distributed on an "AS IS" BASIS,
18
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
19
+ # See the License for the specific language governing permissions and
20
+ # limitations under the License.
21
+ import math
22
+ import warnings
23
+ from dataclasses import dataclass
24
+ from typing import Any, Callable, Optional, Union, List
25
+
26
+ import numpy as np
27
+ import torch
28
+ import torch.nn as nn
29
+ import torch.nn.functional as F
30
+ from torch.nn.init import _calculate_fan_in_and_fan_out
31
+ from torchvision.ops import roi_align
32
+
33
+ from transformers.activations import ACT2FN
34
+ from transformers.modeling_attn_mask_utils import _prepare_4d_attention_mask
35
+ from transformers.modeling_layers import GradientCheckpointingLayer
36
+ from transformers.modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling
37
+ from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
38
+ from transformers.processing_utils import Unpack
39
+ from transformers.utils import ModelOutput, TransformersKwargs, auto_docstring, can_return_tuple, filter_out_non_signature_kwargs
40
+ from transformers.utils.generic import check_model_inputs
41
+ from .configuration_fgclip2 import Fgclip2Config, Fgclip2TextConfig, Fgclip2VisionConfig
42
+
43
+
44
+ @dataclass
45
+ @auto_docstring(
46
+ custom_intro="""
47
+ Base class for vision model's outputs that also contains image embeddings of the pooling of the last hidden states.
48
+ """
49
+ )
50
+ class Fgclip2VisionOutput(ModelOutput):
51
+ r"""
52
+ image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`):
53
+ The image embeddings obtained by applying the projection layer to the pooler_output.
54
+ """
55
+
56
+ image_embeds: Optional[torch.FloatTensor] = None
57
+ last_hidden_state: Optional[torch.FloatTensor] = None
58
+ hidden_states: Optional[tuple[torch.FloatTensor, ...]] = None
59
+ attentions: Optional[tuple[torch.FloatTensor, ...]] = None
60
+
61
+
62
+ @dataclass
63
+ @auto_docstring(
64
+ custom_intro="""
65
+ Base class for text model's outputs that also contains a pooling of the last hidden states.
66
+ """
67
+ )
68
+ class Fgclip2TextOutput(ModelOutput):
69
+ r"""
70
+ text_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`):
71
+ The text embeddings obtained by applying the projection layer to the pooler_output.
72
+ """
73
+
74
+ text_embeds: Optional[torch.FloatTensor] = None
75
+ last_hidden_state: Optional[torch.FloatTensor] = None
76
+ hidden_states: Optional[tuple[torch.FloatTensor, ...]] = None
77
+ attentions: Optional[tuple[torch.FloatTensor, ...]] = None
78
+
79
+
80
+ @dataclass
81
+ @auto_docstring
82
+ class Fgclip2Output(ModelOutput):
83
+ r"""
84
+ loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`):
85
+ Contrastive loss for image-text similarity.
86
+ logits_per_image (`torch.FloatTensor` of shape `(image_batch_size, text_batch_size)`):
87
+ The scaled dot product scores between `image_embeds` and `text_embeds`. This represents the image-text
88
+ similarity scores.
89
+ logits_per_text (`torch.FloatTensor` of shape `(text_batch_size, image_batch_size)`):
90
+ The scaled dot product scores between `text_embeds` and `image_embeds`. This represents the text-image
91
+ similarity scores.
92
+ text_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim`):
93
+ The text embeddings obtained by applying the projection layer to the pooled output of [`Fgclip2TextModel`].
94
+ image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim`):
95
+ The image embeddings obtained by applying the projection layer to the pooled output of [`Fgclip2VisionModel`].
96
+ text_model_output (`BaseModelOutputWithPooling`):
97
+ The output of the [`Fgclip2TextModel`].
98
+ vision_model_output (`BaseModelOutputWithPooling`):
99
+ The output of the [`Fgclip2VisionModel`].
100
+ """
101
+
102
+ loss: Optional[torch.FloatTensor] = None
103
+ logits_per_image: Optional[torch.FloatTensor] = None
104
+ logits_per_text: Optional[torch.FloatTensor] = None
105
+ text_embeds: Optional[torch.FloatTensor] = None
106
+ image_embeds: Optional[torch.FloatTensor] = None
107
+ text_model_output: BaseModelOutputWithPooling = None
108
+ vision_model_output: BaseModelOutputWithPooling = None
109
+
110
+ def to_tuple(self) -> tuple[Any]:
111
+ return tuple(
112
+ self[k] if k not in ["text_model_output", "vision_model_output"] else getattr(self, k).to_tuple()
113
+ for k in self.keys()
114
+ )
115
+
116
+
117
+ class Fgclip2VisionEmbeddings(nn.Module):
118
+ def __init__(self, config: Fgclip2VisionConfig):
119
+ super().__init__()
120
+ self.config = config
121
+ self.embed_dim = config.hidden_size
122
+ self.patch_size = config.patch_size
123
+
124
+ self.patch_embedding = nn.Linear(
125
+ in_features=config.num_channels * self.patch_size * self.patch_size,
126
+ out_features=self.embed_dim,
127
+ )
128
+
129
+ self.num_patches = config.num_patches
130
+ self.position_embedding_size = int(self.num_patches**0.5)
131
+ self.position_embedding = nn.Embedding(self.num_patches, self.embed_dim)
132
+
133
+ @staticmethod
134
+ def resize_positional_embeddings(
135
+ positional_embeddings: torch.Tensor,
136
+ spatial_shapes: torch.LongTensor,
137
+ max_length: int,
138
+ ) -> torch.Tensor:
139
+ """
140
+ Resize positional embeddings to image-specific size and pad to a fixed size.
141
+
142
+ Args:
143
+ positional_embeddings (`torch.Tensor`):
144
+ Position embeddings of shape (height, width, embed_dim)
145
+ spatial_shapes (`torch.LongTensor`):
146
+ Spatial shapes of shape (batch_size, 2) to resize the positional embeddings to
147
+ max_length (`int`):
148
+ Maximum length of the positional embeddings to pad resized positional embeddings to
149
+
150
+ Returns:
151
+ `torch.Tensor`: Embeddings of shape (batch_size, max_length, embed_dim)
152
+ """
153
+ batch_size = spatial_shapes.shape[0]
154
+ embed_dim = positional_embeddings.shape[-1]
155
+ source_dtype = positional_embeddings.dtype
156
+
157
+ resulted_positional_embeddings = torch.empty(
158
+ (batch_size, max_length, embed_dim),
159
+ device=positional_embeddings.device,
160
+ dtype=source_dtype,
161
+ )
162
+
163
+ # (height, width, embed_dim) -> (1, embed_dim, height, width) for interpolation
164
+ positional_embeddings = positional_embeddings.permute(2, 0, 1).unsqueeze(0)
165
+
166
+ # Upcast to float32 on CPU because antialias is not supported for bfloat16/float16 on CPU
167
+ if positional_embeddings.device.type == "cpu":
168
+ positional_embeddings = positional_embeddings.to(torch.float32)
169
+
170
+ for i in range(batch_size):
171
+ # (1, dim, height, width) -> (1, dim, target_height, target_width)
172
+ height, width = spatial_shapes[i]
173
+ resized_embeddings = F.interpolate(
174
+ positional_embeddings,
175
+ size=(height, width),
176
+ mode="bilinear",
177
+ align_corners=False,
178
+ antialias=True,
179
+ )
180
+
181
+ # (1, dim, target_height, target_width) -> (target_height * target_width, dim)
182
+ resized_embeddings = resized_embeddings.reshape(embed_dim, height * width).transpose(0, 1)
183
+
184
+ # Cast to original dtype
185
+ resized_embeddings = resized_embeddings.to(source_dtype)
186
+
187
+ resulted_positional_embeddings[i, : height * width] = resized_embeddings
188
+ resulted_positional_embeddings[i, height * width :] = resized_embeddings[0]
189
+
190
+ return resulted_positional_embeddings
191
+
192
+ def forward(self, pixel_values: torch.FloatTensor, spatial_shapes: torch.LongTensor) -> torch.Tensor:
193
+ """
194
+ Args:
195
+ pixel_values (`torch.FloatTensor`):
196
+ Pixel values of shape (batch_size, max_num_patches, num_channels * patch_size * patch_size)
197
+ spatial_shapes (`list[tuple[int, int]]`):
198
+ Spatial shapes of shape (batch_size, 2) to resize the positional embeddings to
199
+ """
200
+
201
+ # Apply patch embeddings to already patchified pixel values
202
+ target_dtype = self.patch_embedding.weight.dtype
203
+ patch_embeds = self.patch_embedding(pixel_values.to(dtype=target_dtype))
204
+
205
+ # Get positional resized and padded positional embeddings
206
+ positional_embeddings = self.position_embedding.weight.reshape(
207
+ self.position_embedding_size, self.position_embedding_size, -1
208
+ )
209
+ resized_positional_embeddings = self.resize_positional_embeddings(
210
+ positional_embeddings, spatial_shapes, max_length=pixel_values.shape[1]
211
+ )
212
+
213
+ # Add positional embeddings to patch embeddings
214
+ embeddings = patch_embeds + resized_positional_embeddings
215
+ return embeddings
216
+
217
+
218
+ def eager_attention_forward(
219
+ module: nn.Module,
220
+ query: torch.Tensor,
221
+ key: torch.Tensor,
222
+ value: torch.Tensor,
223
+ attention_mask: Optional[torch.Tensor],
224
+ scaling: float,
225
+ dropout: float = 0.0,
226
+ **kwargs,
227
+ ):
228
+ attn_weights = torch.matmul(query, key.transpose(-1, -2)) * scaling
229
+ if attention_mask is not None:
230
+ attn_weights = attn_weights + attention_mask
231
+
232
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
233
+ attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
234
+
235
+ attn_output = torch.matmul(attn_weights, value)
236
+ attn_output = attn_output.transpose(1, 2).contiguous()
237
+
238
+ return attn_output, attn_weights
239
+
240
+
241
+ class Fgclip2Attention(nn.Module):
242
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
243
+
244
+ def __init__(self, config):
245
+ super().__init__()
246
+ self.config = config
247
+ self.embed_dim = config.hidden_size
248
+ self.num_heads = config.num_attention_heads
249
+ self.head_dim = self.embed_dim // self.num_heads
250
+ if self.head_dim * self.num_heads != self.embed_dim:
251
+ raise ValueError(
252
+ f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
253
+ f" {self.num_heads})."
254
+ )
255
+ self.scale = self.head_dim**-0.5
256
+ self.dropout = config.attention_dropout
257
+ self.is_causal = False
258
+
259
+ self.k_proj = nn.Linear(self.embed_dim, self.embed_dim)
260
+ self.v_proj = nn.Linear(self.embed_dim, self.embed_dim)
261
+ self.q_proj = nn.Linear(self.embed_dim, self.embed_dim)
262
+ self.out_proj = nn.Linear(self.embed_dim, self.embed_dim)
263
+
264
+ def forward(
265
+ self,
266
+ hidden_states: torch.Tensor,
267
+ attention_mask: Optional[torch.Tensor] = None,
268
+ **kwargs,
269
+ ) -> tuple[torch.Tensor, Optional[torch.Tensor]]:
270
+ """Input shape: Batch x Time x Channel"""
271
+
272
+ batch_size, seq_length, embed_dim = hidden_states.shape
273
+
274
+ queries = self.q_proj(hidden_states)
275
+ keys = self.k_proj(hidden_states)
276
+ values = self.v_proj(hidden_states)
277
+
278
+ queries = queries.view(batch_size, seq_length, self.num_heads, self.head_dim).transpose(1, 2)
279
+ keys = keys.view(batch_size, seq_length, self.num_heads, self.head_dim).transpose(1, 2)
280
+ values = values.view(batch_size, seq_length, self.num_heads, self.head_dim).transpose(1, 2)
281
+
282
+ attention_interface: Callable = eager_attention_forward
283
+ if self.config._attn_implementation != "eager":
284
+ attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
285
+
286
+ attn_output, attn_weights = attention_interface(
287
+ self,
288
+ queries,
289
+ keys,
290
+ values,
291
+ attention_mask,
292
+ is_causal=self.is_causal,
293
+ scaling=self.scale,
294
+ dropout=0.0 if not self.training else self.dropout,
295
+ )
296
+
297
+ attn_output = attn_output.reshape(batch_size, seq_length, embed_dim).contiguous()
298
+ attn_output = self.out_proj(attn_output)
299
+
300
+ return attn_output, attn_weights
301
+
302
+
303
+ class Fgclip2MLP(nn.Module):
304
+ def __init__(self, config):
305
+ super().__init__()
306
+ self.config = config
307
+ self.activation_fn = ACT2FN[config.hidden_act]
308
+ self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
309
+ self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
310
+
311
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
312
+ hidden_states = self.fc1(hidden_states)
313
+ hidden_states = self.activation_fn(hidden_states)
314
+ hidden_states = self.fc2(hidden_states)
315
+ return hidden_states
316
+
317
+
318
+ class Fgclip2EncoderLayer(GradientCheckpointingLayer):
319
+ def __init__(self, config: Union[Fgclip2VisionConfig, Fgclip2TextConfig]):
320
+ super().__init__()
321
+ self.embed_dim = config.hidden_size
322
+ self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
323
+ self.self_attn = Fgclip2Attention(config)
324
+ self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
325
+ self.mlp = Fgclip2MLP(config)
326
+
327
+ @auto_docstring
328
+ def forward(
329
+ self,
330
+ hidden_states: torch.Tensor,
331
+ attention_mask: torch.Tensor,
332
+ **kwargs: Unpack[TransformersKwargs],
333
+ ) -> torch.FloatTensor:
334
+ residual = hidden_states
335
+
336
+ hidden_states = self.layer_norm1(hidden_states)
337
+ hidden_states, _ = self.self_attn(
338
+ hidden_states=hidden_states,
339
+ attention_mask=attention_mask,
340
+ **kwargs,
341
+ )
342
+ hidden_states = residual + hidden_states
343
+
344
+ residual = hidden_states
345
+ hidden_states = self.layer_norm2(hidden_states)
346
+ hidden_states = self.mlp(hidden_states)
347
+ hidden_states = residual + hidden_states
348
+
349
+ return hidden_states
350
+
351
+
352
+ class Fgclip2Encoder(nn.Module):
353
+ """
354
+ Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
355
+ [`Fgclip2EncoderLayer`].
356
+
357
+ Args:
358
+ config: Fgclip2Config
359
+ """
360
+
361
+ def __init__(self, config: Fgclip2Config):
362
+ super().__init__()
363
+ self.config = config
364
+ self.layers = nn.ModuleList([Fgclip2EncoderLayer(config) for _ in range(config.num_hidden_layers)])
365
+ self.gradient_checkpointing = False
366
+
367
+ # Ignore copy
368
+ @auto_docstring
369
+ def forward(
370
+ self,
371
+ inputs_embeds,
372
+ attention_mask: Optional[torch.Tensor] = None,
373
+ **kwargs: Unpack[TransformersKwargs],
374
+ ) -> BaseModelOutput:
375
+ hidden_states = inputs_embeds
376
+ for encoder_layer in self.layers:
377
+ hidden_states = encoder_layer(
378
+ hidden_states,
379
+ attention_mask,
380
+ **kwargs,
381
+ )
382
+
383
+ return BaseModelOutput(last_hidden_state=hidden_states)
384
+
385
+
386
+ class Fgclip2VisionTransformer(nn.Module):
387
+ def __init__(self, config: Fgclip2VisionConfig):
388
+ super().__init__()
389
+ self.config = config
390
+ embed_dim = config.hidden_size
391
+
392
+ self.embeddings = Fgclip2VisionEmbeddings(config)
393
+ self.encoder = Fgclip2Encoder(config)
394
+ self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
395
+ self.use_head = True if not hasattr(config, "vision_use_head") else config.vision_use_head
396
+ if self.use_head:
397
+ self.head = Fgclip2MultiheadAttentionPoolingHead(config)
398
+
399
+ @can_return_tuple
400
+ @auto_docstring
401
+ def forward(
402
+ self,
403
+ pixel_values: torch.FloatTensor,
404
+ attention_mask: torch.Tensor,
405
+ spatial_shapes: torch.LongTensor,
406
+ output_attentions: Optional[bool] = None,
407
+ output_hidden_states: Optional[bool] = None,
408
+ ) -> BaseModelOutputWithPooling:
409
+ r"""
410
+ spatial_shapes (`torch.LongTensor` of shape `(batch_size, 2)`):
411
+ Tensor containing the spatial dimensions (height, width) of the input images.
412
+ """
413
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
414
+ output_hidden_states = (
415
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
416
+ )
417
+
418
+ hidden_states = self.embeddings(pixel_values, spatial_shapes)
419
+
420
+ if attention_mask is not None and self.config._attn_implementation != "flash_attention_2":
421
+ # [batch_size, seq_len] -> [batch_size, 1, tgt_seq_len, src_seq_len]
422
+ encoder_attention_mask = _prepare_4d_attention_mask(attention_mask, hidden_states.dtype)
423
+ else:
424
+ encoder_attention_mask = attention_mask
425
+
426
+ encoder_outputs: BaseModelOutput = self.encoder(
427
+ inputs_embeds=hidden_states,
428
+ attention_mask=encoder_attention_mask,
429
+ output_attentions=output_attentions,
430
+ output_hidden_states=output_hidden_states,
431
+ )
432
+
433
+ last_hidden_state = encoder_outputs.last_hidden_state
434
+ last_hidden_state = self.post_layernorm(last_hidden_state)
435
+
436
+ pooler_output = self.head(last_hidden_state, attention_mask) if self.use_head else None
437
+
438
+ return BaseModelOutputWithPooling(
439
+ last_hidden_state=last_hidden_state,
440
+ pooler_output=pooler_output,
441
+ hidden_states=encoder_outputs.hidden_states,
442
+ attentions=encoder_outputs.attentions,
443
+ )
444
+
445
+
446
+ def _trunc_normal_(tensor, mean, std, a, b):
447
+ # Cut & paste from PyTorch official master until it's in a few official releases - RW
448
+ # Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
449
+ def norm_cdf(x):
450
+ # Computes standard normal cumulative distribution function
451
+ return (1.0 + math.erf(x / math.sqrt(2.0))) / 2.0
452
+
453
+ if (mean < a - 2 * std) or (mean > b + 2 * std):
454
+ warnings.warn(
455
+ "mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
456
+ "The distribution of values may be incorrect.",
457
+ stacklevel=2,
458
+ )
459
+
460
+ # Values are generated by using a truncated uniform distribution and
461
+ # then using the inverse CDF for the normal distribution.
462
+ # Get upper and lower cdf values
463
+ l = norm_cdf((a - mean) / std)
464
+ u = norm_cdf((b - mean) / std)
465
+
466
+ # Uniformly fill tensor with values from [l, u], then translate to
467
+ # [2l-1, 2u-1].
468
+ tensor.uniform_(2 * l - 1, 2 * u - 1)
469
+
470
+ # Use inverse cdf transform for normal distribution to get truncated
471
+ # standard normal
472
+ tensor.erfinv_()
473
+
474
+ # Transform to proper mean, std
475
+ tensor.mul_(std * math.sqrt(2.0))
476
+ tensor.add_(mean)
477
+
478
+ # Clamp to ensure it's in the proper range
479
+ tensor.clamp_(min=a, max=b)
480
+
481
+
482
+ def trunc_normal_tf_(
483
+ tensor: torch.Tensor, mean: float = 0.0, std: float = 1.0, a: float = -2.0, b: float = 2.0
484
+ ) -> torch.Tensor:
485
+ """Fills the input Tensor with values drawn from a truncated
486
+ normal distribution. The values are effectively drawn from the
487
+ normal distribution :math:`\\mathcal{N}(\text{mean}, \text{std}^2)`
488
+ with values outside :math:`[a, b]` redrawn until they are within
489
+ the bounds. The method used for generating the random values works
490
+ best when :math:`a \\leq \text{mean} \\leq b`.
491
+
492
+ NOTE: this 'tf' variant behaves closer to Tensorflow / JAX impl where the
493
+ bounds [a, b] are applied when sampling the normal distribution with mean=0, std=1.0
494
+ and the result is subsequently scaled and shifted by the mean and std args.
495
+
496
+ Args:
497
+ tensor: an n-dimensional `torch.Tensor`
498
+ mean: the mean of the normal distribution
499
+ std: the standard deviation of the normal distribution
500
+ a: the minimum cutoff value
501
+ b: the maximum cutoff value
502
+ """
503
+ with torch.no_grad():
504
+ _trunc_normal_(tensor, 0, 1.0, a, b)
505
+ tensor.mul_(std).add_(mean)
506
+
507
+
508
+ def variance_scaling_(tensor, scale=1.0, mode="fan_in", distribution="normal"):
509
+ fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor)
510
+ if mode == "fan_in":
511
+ denom = fan_in
512
+ elif mode == "fan_out":
513
+ denom = fan_out
514
+ elif mode == "fan_avg":
515
+ denom = (fan_in + fan_out) / 2
516
+
517
+ variance = scale / denom
518
+
519
+ if distribution == "truncated_normal":
520
+ # constant is stddev of standard normal truncated to (-2, 2)
521
+ trunc_normal_tf_(tensor, std=math.sqrt(variance) / 0.87962566103423978)
522
+ elif distribution == "normal":
523
+ with torch.no_grad():
524
+ tensor.normal_(std=math.sqrt(variance))
525
+ elif distribution == "uniform":
526
+ bound = math.sqrt(3 * variance)
527
+ with torch.no_grad():
528
+ tensor.uniform_(-bound, bound)
529
+ else:
530
+ raise ValueError(f"invalid distribution {distribution}")
531
+
532
+
533
+ def lecun_normal_(tensor):
534
+ variance_scaling_(tensor, mode="fan_in", distribution="truncated_normal")
535
+
536
+
537
+ def default_flax_embed_init(tensor):
538
+ variance_scaling_(tensor, mode="fan_in", distribution="normal")
539
+
540
+
541
+ @auto_docstring
542
+ class Fgclip2PreTrainedModel(PreTrainedModel):
543
+ config: Fgclip2Config
544
+ base_model_prefix = "fgclip2"
545
+ supports_gradient_checkpointing = True
546
+
547
+ _no_split_modules = [
548
+ "Fgclip2TextEmbeddings",
549
+ "Fgclip2VisionEmbeddings",
550
+ "Fgclip2EncoderLayer",
551
+ "Fgclip2MultiheadAttentionPoolingHead",
552
+ ]
553
+ _supports_flash_attn = True
554
+ _supports_sdpa = True
555
+ _supports_flex_attn = True
556
+ _supports_attention_backend = True
557
+
558
+ _can_record_outputs = {
559
+ "hidden_states": Fgclip2EncoderLayer,
560
+ "attentions": Fgclip2Attention,
561
+ }
562
+
563
+ def _init_weights(self, module):
564
+ """Initialize the weights"""
565
+ if isinstance(module, Fgclip2VisionEmbeddings):
566
+ width = (
567
+ self.config.vision_config.hidden_size
568
+ if isinstance(self.config, Fgclip2Config)
569
+ else self.config.hidden_size
570
+ )
571
+ nn.init.normal_(module.position_embedding.weight, std=1 / np.sqrt(width))
572
+ elif isinstance(module, nn.Embedding):
573
+ default_flax_embed_init(module.weight)
574
+ elif isinstance(module, Fgclip2Attention):
575
+ nn.init.xavier_uniform_(module.q_proj.weight)
576
+ nn.init.xavier_uniform_(module.k_proj.weight)
577
+ nn.init.xavier_uniform_(module.v_proj.weight)
578
+ nn.init.xavier_uniform_(module.out_proj.weight)
579
+ nn.init.zeros_(module.q_proj.bias)
580
+ nn.init.zeros_(module.k_proj.bias)
581
+ nn.init.zeros_(module.v_proj.bias)
582
+ nn.init.zeros_(module.out_proj.bias)
583
+ elif isinstance(module, Fgclip2MLP):
584
+ nn.init.xavier_uniform_(module.fc1.weight)
585
+ nn.init.xavier_uniform_(module.fc2.weight)
586
+ nn.init.normal_(module.fc1.bias, std=1e-6)
587
+ nn.init.normal_(module.fc2.bias, std=1e-6)
588
+ elif isinstance(module, Fgclip2MultiheadAttentionPoolingHead):
589
+ nn.init.xavier_uniform_(module.probe.data)
590
+ nn.init.xavier_uniform_(module.attention.in_proj_weight.data)
591
+ nn.init.zeros_(module.attention.in_proj_bias.data)
592
+ elif isinstance(module, Fgclip2Model):
593
+ logit_scale_init = torch.log(torch.tensor(1.0))
594
+ module.logit_scale.data.fill_(logit_scale_init)
595
+ module.logit_bias.data.zero_()
596
+ elif isinstance(module, (nn.Linear, nn.Conv2d)):
597
+ lecun_normal_(module.weight)
598
+ if module.bias is not None:
599
+ nn.init.zeros_(module.bias)
600
+ elif isinstance(module, nn.LayerNorm):
601
+ module.bias.data.zero_()
602
+ module.weight.data.fill_(1.0)
603
+
604
+
605
+ class Fgclip2TextEmbeddings(nn.Module):
606
+ def __init__(self, config: Fgclip2TextConfig):
607
+ super().__init__()
608
+ embed_dim = config.hidden_size
609
+
610
+ self.token_embedding = nn.Embedding(config.vocab_size, embed_dim)
611
+ self.position_embedding = nn.Embedding(config.max_position_embeddings, embed_dim)
612
+
613
+ # position_ids (1, len position emb) is contiguous in memory and exported when serialized
614
+ self.register_buffer(
615
+ "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
616
+ )
617
+
618
+ keep_len = config.keep_len
619
+ longtext_len = config.longtext_len
620
+
621
+ self.position_embedding_res = nn.Embedding(longtext_len, embed_dim)
622
+ self.position_embedding_ori = nn.Embedding(longtext_len, embed_dim)
623
+
624
+ self.mask1 = torch.zeros([longtext_len, 1])
625
+ self.mask1[:keep_len, :] = 1
626
+ self.mask2 = torch.zeros([longtext_len, 1])
627
+ self.mask2[keep_len:, :] = 1
628
+
629
+ # position_ids (1, len position emb) is contiguous in memory and exported when serialized
630
+ self.register_buffer("position_ids", torch.arange(longtext_len).expand((1, -1)), persistent=False)
631
+
632
+ def forward(
633
+ self,
634
+ input_ids: Optional[torch.LongTensor] = None,
635
+ position_ids: Optional[torch.LongTensor] = None,
636
+ inputs_embeds: Optional[torch.FloatTensor] = None,
637
+ use_short_position_ids: Optional[bool] = True,
638
+ ) -> torch.Tensor:
639
+ r"""
640
+ Args:
641
+ use_short_position_ids (`bool`, optional, defaults to `True`):
642
+ If `True`, applies a positional encoding scheme optimized for **short-text processing** and **local-region description processing**,
643
+ such as phrases or simple sentences. Corresponds to the `"short"` and `"box"` walk type.
644
+ Assumes compact semantic structure and local dependency dominance.
645
+ """
646
+
647
+ seq_length = input_ids.shape[-1] if input_ids is not None else inputs_embeds.shape[-2]
648
+
649
+ if position_ids is None:
650
+ position_ids = self.position_ids[:, :seq_length]
651
+
652
+ if inputs_embeds is None:
653
+ inputs_embeds = self.token_embedding(input_ids)
654
+
655
+ if use_short_position_ids:
656
+ position_embeddings = self.position_embedding(position_ids)
657
+ embeddings = inputs_embeds + position_embeddings
658
+ else:
659
+ position_embeddings_res = self.position_embedding_res(position_ids)
660
+ position_embeddings_ori = self.position_embedding_ori(position_ids)
661
+ embeddings = (
662
+ inputs_embeds
663
+ + (position_embeddings_ori * self.mask1.to(inputs_embeds.device))
664
+ .type(inputs_embeds.dtype)
665
+ .to(inputs_embeds.device)
666
+ + (position_embeddings_res * self.mask2.to(inputs_embeds.device))
667
+ .type(inputs_embeds.dtype)
668
+ .to(inputs_embeds.device)
669
+ )
670
+
671
+ return embeddings
672
+
673
+
674
+ class Fgclip2TextTransformer(nn.Module):
675
+ def __init__(self, config: Fgclip2TextConfig):
676
+ super().__init__()
677
+ self.config = config
678
+ embed_dim = config.hidden_size
679
+ self.embeddings = Fgclip2TextEmbeddings(config)
680
+ self.encoder = Fgclip2Encoder(config)
681
+ self.final_layer_norm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
682
+
683
+ self.head = nn.Linear(embed_dim, config.projection_size)
684
+
685
+ @can_return_tuple
686
+ @auto_docstring
687
+ def forward(
688
+ self,
689
+ input_ids: Optional[torch.Tensor] = None,
690
+ attention_mask: Optional[torch.Tensor] = None,
691
+ position_ids: Optional[torch.Tensor] = None,
692
+ walk_type: str = "short", # Modified: Single parameter
693
+ **kwargs: Unpack[TransformersKwargs],
694
+ ) -> BaseModelOutputWithPooling:
695
+ r"""
696
+ Args:
697
+ walk_type (`str`, optional, defaults to `"short"`):
698
+ The traversal strategy used during feature extraction. Must be one of
699
+ `"short"`, `"box"`, or `"long"`. This controls how contextual information
700
+ is aggregated across the input:
701
+ - `"short"`: Optimized for short-text understanding, focusing on tight semantic coherence
702
+ and direct word interactions. Suitable when the input is a phrase or brief sentence.
703
+ - `"box"`: Designed for local-region description processing, such as grounding in vision-language
704
+ models or processing localized textual descriptions (e.g., object regions or segments).
705
+ Emphasizes dense features within bounded semantic units.
706
+ - `"long"`: Tailored for long-form text processing, enabling modeling of extended dependencies
707
+ and discourse structure. Uses strategies like chunking or hierarchical attention to handle
708
+ longer sequences effectively.
709
+ """
710
+ if input_ids is None:
711
+ raise ValueError("You have to specify input_ids")
712
+
713
+ # Validate walk_type
714
+ walk_type = walk_type.lower()
715
+ if walk_type not in ["short", "box", "long"]:
716
+ raise ValueError(f"Invalid `walk_type`: {walk_type}. Must be one of 'short', 'box', 'long'.")
717
+
718
+ # Convert walk_type to boolean flags for internal logic
719
+ walk_short = walk_type == "short"
720
+ walk_box = walk_type == "box"
721
+ walk_long = walk_type == "long"
722
+
723
+ input_shape = input_ids.size()
724
+ input_ids = input_ids.view(-1, input_shape[-1])
725
+ hidden_states = self.embeddings(
726
+ input_ids=input_ids, position_ids=position_ids, use_short_position_ids=(not walk_long)
727
+ )
728
+ # note: fgclip2's text model does not use a causal mask, unlike the original CLIP model.
729
+ # expand attention_mask
730
+ uses_flash_attention = "flash" in self.config._attn_implementation
731
+ if uses_flash_attention:
732
+ attention_mask = None
733
+ elif attention_mask is not None and not uses_flash_attention:
734
+ # [batch_size, seq_len] -> [batch_size, 1, tgt_seq_len, src_seq_len]
735
+ attention_mask = _prepare_4d_attention_mask(attention_mask, hidden_states.dtype)
736
+ encoder_outputs: BaseModelOutput = self.encoder(
737
+ inputs_embeds=hidden_states,
738
+ attention_mask=attention_mask,
739
+ **kwargs,
740
+ )
741
+ last_hidden_state = encoder_outputs.last_hidden_state
742
+ last_hidden_state = self.final_layer_norm(last_hidden_state)
743
+ # The model uses the last token's hidden state, which may be padding.
744
+ pooled_output = last_hidden_state[:, -1, :]
745
+ if walk_short == True:
746
+ assert walk_box == False
747
+ assert walk_long == False
748
+ temp_pool_out = []
749
+ for i in range(pooled_output.shape[0]):
750
+ temp_pool_out.append(self.head(pooled_output[i : i + 1]))
751
+ pooled_output = torch.cat(temp_pool_out, dim=0)
752
+ # pooled_output = self.head(pooled_output)
753
+ if walk_box == True:
754
+ assert walk_short == False
755
+ assert walk_long == False
756
+ pooled_output = pooled_output
757
+ if walk_long == True:
758
+ assert walk_short == False
759
+ assert walk_box == False
760
+ pooled_output = pooled_output
761
+ return BaseModelOutputWithPooling(
762
+ last_hidden_state=last_hidden_state,
763
+ pooler_output=pooled_output,
764
+ )
765
+
766
+
767
+ @auto_docstring(
768
+ custom_intro="""
769
+ The text model from Fgclip2 without any head or projection on top.
770
+ """
771
+ )
772
+ class Fgclip2TextModel(Fgclip2PreTrainedModel):
773
+ config: Fgclip2TextConfig
774
+
775
+ def __init__(self, config: Fgclip2TextConfig):
776
+ super().__init__(config)
777
+ self.text_model = Fgclip2TextTransformer(config)
778
+ # Initialize weights and apply final processing
779
+ self.post_init()
780
+
781
+ def get_input_embeddings(self) -> nn.Module:
782
+ return self.text_model.embeddings.token_embedding
783
+
784
+ def set_input_embeddings(self, value):
785
+ self.text_model.embeddings.token_embedding = value
786
+
787
+ @check_model_inputs
788
+ @auto_docstring
789
+ def forward(
790
+ self,
791
+ input_ids: Optional[torch.Tensor] = None,
792
+ attention_mask: Optional[torch.Tensor] = None,
793
+ position_ids: Optional[torch.Tensor] = None,
794
+ walk_type: str = "short", # Modified: Single parameter
795
+ **kwargs: Unpack[TransformersKwargs],
796
+ ) -> BaseModelOutputWithPooling:
797
+ r"""
798
+ Args:
799
+ walk_type (`str`, optional, defaults to `"short"`):
800
+ The traversal strategy used during feature extraction. Must be one of
801
+ `"short"`, `"box"`, or `"long"`. This controls how contextual information
802
+ is aggregated across the input:
803
+ - `"short"`: Optimized for short-text understanding, focusing on tight semantic coherence
804
+ and direct word interactions. Suitable when the input is a phrase or brief sentence.
805
+ - `"box"`: Designed for local-region description processing, such as grounding in vision-language
806
+ models or processing localized textual descriptions (e.g., object regions or segments).
807
+ Emphasizes dense features within bounded semantic units.
808
+ - `"long"`: Tailored for long-form text processing, enabling modeling of extended dependencies
809
+ and discourse structure. Uses strategies like chunking or hierarchical attention to handle
810
+ longer sequences effectively.
811
+ """
812
+ return self.text_model(
813
+ input_ids=input_ids,
814
+ attention_mask=attention_mask,
815
+ position_ids=position_ids,
816
+ walk_type=walk_type, # Modified: Pass single parameter
817
+ **kwargs,
818
+ )
819
+
820
+
821
+ class Fgclip2MultiheadAttentionPoolingHead(nn.Module):
822
+ """Multihead Attention Pooling."""
823
+
824
+ def __init__(self, config: Fgclip2VisionConfig):
825
+ super().__init__()
826
+
827
+ self.probe = nn.Parameter(torch.randn(1, 1, config.hidden_size))
828
+ self.attention = torch.nn.MultiheadAttention(config.hidden_size, config.num_attention_heads, batch_first=True)
829
+ self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
830
+ self.mlp = Fgclip2MLP(config)
831
+ self.num_heads = config.num_attention_heads
832
+
833
+ def forward(self, hidden_state: torch.Tensor, attention_mask: Optional[torch.Tensor] = None) -> torch.Tensor:
834
+ batch_size = hidden_state.shape[0]
835
+ probe = self.probe.repeat(batch_size, 1, 1)
836
+
837
+ if attention_mask is not None:
838
+ target_len, source_len = probe.shape[1], hidden_state.shape[1]
839
+ attention_mask = _prepare_4d_attention_mask(attention_mask, hidden_state.dtype, target_len)
840
+ attention_mask = attention_mask.repeat(1, self.num_heads, target_len, 1)
841
+ attention_mask = attention_mask.reshape(-1, target_len, source_len)
842
+
843
+ group_size = self.num_heads
844
+ outputs = []
845
+ for i in range(batch_size):
846
+ start_idx = i * group_size
847
+ end_idx = start_idx + group_size
848
+ out_i = self.attention(
849
+ probe[i : i + 1],
850
+ hidden_state[i : i + 1],
851
+ hidden_state[i : i + 1],
852
+ attn_mask=attention_mask[start_idx:end_idx] if attention_mask is not None else None,
853
+ )[0]
854
+ outputs.append(out_i)
855
+
856
+ hidden_state = torch.cat(outputs, dim=0)
857
+ residual = hidden_state
858
+ hidden_state = self.layernorm(hidden_state)
859
+
860
+ temp_outs = []
861
+ for k in range(batch_size):
862
+ out_k = self.mlp(hidden_state[k : k + 1])
863
+ temp_outs.append(out_k)
864
+ hidden_state = residual + torch.cat(temp_outs, dim=0)
865
+
866
+ return hidden_state[:, 0]
867
+
868
+
869
+ @auto_docstring(
870
+ custom_intro="""
871
+ The vision model from Fgclip2 without any head or projection on top.
872
+ """
873
+ )
874
+ class Fgclip2VisionModel(Fgclip2PreTrainedModel):
875
+ config: Fgclip2VisionConfig
876
+ main_input_name = "pixel_values"
877
+
878
+ def __init__(self, config: Fgclip2VisionConfig):
879
+ super().__init__(config)
880
+
881
+ self.vision_model = Fgclip2VisionTransformer(config)
882
+
883
+ # Initialize weights and apply final processing
884
+ self.post_init()
885
+
886
+ def get_input_embeddings(self) -> nn.Module:
887
+ return self.vision_model.embeddings.patch_embedding
888
+
889
+ @check_model_inputs
890
+ @auto_docstring
891
+ def forward(
892
+ self,
893
+ pixel_values: torch.FloatTensor,
894
+ pixel_attention_mask: torch.Tensor,
895
+ spatial_shapes: torch.LongTensor,
896
+ output_attentions: Optional[bool] = None,
897
+ output_hidden_states: Optional[bool] = None,
898
+ ) -> BaseModelOutputWithPooling:
899
+ r"""
900
+ pixel_attention_mask (`torch.Tensor` of shape `(batch_size, image_size, image_size)`, *optional*):
901
+ Mask to avoid performing attention on padding pixel indices.
902
+ spatial_shapes (`torch.LongTensor` of shape `(batch_size, 2)`):
903
+ Tensor containing the spatial dimensions (height, width) of the input images.
904
+
905
+ Examples:
906
+
907
+ ```python
908
+ >>> from PIL import Image
909
+ >>> import requests
910
+ >>> from transformers import AutoProcessor, Fgclip2VisionModel
911
+
912
+ >>> model = Fgclip2VisionModel.from_pretrained("qihoo360/fg-clip2-base")
913
+ >>> processor = AutoProcessor.from_pretrained("qihoo360/fg-clip2-base")
914
+
915
+ >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
916
+ >>> image = Image.open(requests.get(url, stream=True).raw)
917
+
918
+ >>> inputs = processor(images=image, return_tensors="pt")
919
+
920
+ >>> outputs = model(**inputs)
921
+ >>> last_hidden_state = outputs.last_hidden_state
922
+ >>> pooled_output = outputs.pooler_output # pooled features
923
+ ```"""
924
+ return self.vision_model(
925
+ pixel_values=pixel_values,
926
+ attention_mask=pixel_attention_mask,
927
+ spatial_shapes=spatial_shapes,
928
+ output_attentions=output_attentions,
929
+ output_hidden_states=output_hidden_states,
930
+ )
931
+
932
+
933
+ @auto_docstring
934
+ class Fgclip2Model(Fgclip2PreTrainedModel):
935
+ config: Fgclip2Config
936
+
937
+ def __init__(self, config: Fgclip2Config):
938
+ super().__init__(config)
939
+
940
+ if not isinstance(config.text_config, Fgclip2TextConfig):
941
+ raise TypeError(
942
+ "config.text_config is expected to be of type Fgclip2TextConfig but is of type"
943
+ f" {type(config.text_config)}."
944
+ )
945
+
946
+ if not isinstance(config.vision_config, Fgclip2VisionConfig):
947
+ raise TypeError(
948
+ "config.vision_config is expected to be of type Fgclip2VisionConfig but is of type"
949
+ f" {type(config.vision_config)}."
950
+ )
951
+
952
+ text_config = config.text_config
953
+ vision_config = config.vision_config
954
+
955
+ # First, initialize the text and vision models with proper attention implementation
956
+ text_model = Fgclip2TextModel._from_config(text_config)
957
+ vision_model = Fgclip2VisionModel._from_config(vision_config)
958
+
959
+ # Second, get the text and vision submodules (for backward compatibility)
960
+ self.text_model = text_model.text_model
961
+ self.vision_model = vision_model.vision_model
962
+
963
+ self.logit_scale = nn.Parameter(torch.randn(1))
964
+ self.logit_bias = nn.Parameter(torch.randn(1))
965
+ self.dense_feature_head = Fgclip2MultiheadAttentionPoolingHead(vision_config)
966
+ self.embed_dim = text_config.hidden_size
967
+ self.longtext_head = nn.Linear(self.embed_dim, self.embed_dim)
968
+ self.boxtext_head = nn.Linear(self.embed_dim, self.embed_dim)
969
+
970
+ # Initialize weights and apply final processing
971
+ self.post_init()
972
+
973
+ @filter_out_non_signature_kwargs()
974
+ @auto_docstring
975
+ def get_text_features(
976
+ self,
977
+ input_ids: torch.Tensor,
978
+ attention_mask: Optional[torch.Tensor] = None,
979
+ position_ids: Optional[torch.Tensor] = None,
980
+ walk_type: str = "short",
981
+ ) -> torch.FloatTensor:
982
+ r"""
983
+ Extracts feature representations from the input text.
984
+
985
+ Args:
986
+ input_ids (`torch.Tensor` of shape `(batch_size, sequence_length)`):
987
+ The token IDs of the input sequence, as generated by the tokenizer.
988
+ attention_mask (`torch.Tensor`, optional, of shape `(batch_size, sequence_length)`):
989
+ A mask indicating which tokens are valid (1) and which are padding (0).
990
+ If not provided, all tokens are assumed to be valid.
991
+ position_ids (`torch.Tensor`, optional, of shape `(batch_size, sequence_length)`):
992
+ Position indices for each token in the sequence. If not provided,
993
+ positions are automatically constructed based on `input_ids`.
994
+ walk_type (`str`, optional, defaults to `"short"`):
995
+ The traversal strategy used during feature extraction. Must be one of
996
+ `"short"`, `"box"`, or `"long"`. This controls how contextual information
997
+ is aggregated across the input:
998
+ - `"short"`: Optimized for short-text understanding, focusing on tight semantic coherence
999
+ and direct word interactions. Suitable when the input is a phrase or brief sentence.
1000
+ - `"box"`: Designed for local-region description processing, such as grounding in vision-language
1001
+ models or processing localized textual descriptions (e.g., object regions or segments).
1002
+ Emphasizes dense features within bounded semantic units.
1003
+ - `"long"`: Tailored for long-form text processing, enabling modeling of extended dependencies
1004
+ and discourse structure. Uses strategies like chunking or hierarchical attention to handle
1005
+ longer sequences effectively.
1006
+
1007
+ Returns:
1008
+ `torch.FloatTensor` of shape `(batch_size, hidden_size)` or `(batch_size, sequence_length, hidden_size)`:
1009
+ The extracted feature tensor representing the input text. The output shape depends on
1010
+ whether a pooled representation or per-token embeddings are returned.
1011
+
1012
+ Examples:
1013
+
1014
+ ```python
1015
+ >>> from transformers import AutoTokenizer, AutoModel
1016
+ >>> import torch
1017
+
1018
+ >>> model = AutoModel.from_pretrained("qihoo360/fg-clip2-base")
1019
+ >>> tokenizer = AutoTokenizer.from_pretrained("qihoo360/fg-clip2-base")
1020
+
1021
+ >>> # important: make sure to set padding="max_length" as that's how the model was trained
1022
+ >>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding="max_length", return_tensors="pt")
1023
+ >>> with torch.no_grad():
1024
+ ... text_features = model.get_text_features(**inputs, walk_type="short")
1025
+ ```"""
1026
+
1027
+ walk_type = walk_type.lower()
1028
+
1029
+ if walk_type not in ["short", "box", "long"]:
1030
+ raise ValueError(f"Invalid `walk_type`: {walk_type}. Must be one of 'short', 'box', 'long'.")
1031
+
1032
+ walk_short = walk_type == "short"
1033
+ walk_box = walk_type == "box"
1034
+ walk_long = walk_type == "long"
1035
+
1036
+ text_outputs: BaseModelOutputWithPooling = self.text_model(
1037
+ input_ids=input_ids,
1038
+ attention_mask=attention_mask,
1039
+ position_ids=position_ids,
1040
+ walk_type=walk_type,
1041
+ )
1042
+
1043
+ if walk_short:
1044
+ pooled_output = text_outputs.pooler_output
1045
+
1046
+ if walk_box:
1047
+ pooled_output = self.boxtext_head(text_outputs.pooler_output)
1048
+
1049
+ if walk_long:
1050
+ pooled_output = self.longtext_head(text_outputs.pooler_output)
1051
+
1052
+ return pooled_output
1053
+
1054
+ @filter_out_non_signature_kwargs()
1055
+ @auto_docstring
1056
+ def get_image_features(
1057
+ self,
1058
+ pixel_values: Optional[torch.FloatTensor] = None,
1059
+ pixel_attention_mask: Optional[torch.Tensor] = None,
1060
+ spatial_shapes: Optional[torch.LongTensor] = None,
1061
+ ) -> torch.FloatTensor:
1062
+ r"""
1063
+ pixel_attention_mask (`torch.Tensor` of shape `(batch_size, image_size, image_size)`, *optional*):
1064
+ Mask to avoid performing attention on padding pixel indices.
1065
+ spatial_shapes (`torch.LongTensor` of shape `(batch_size, 2)`):
1066
+ Tensor containing the spatial dimensions (height, width) of the input images.
1067
+
1068
+ Returns:
1069
+ image_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The image embeddings obtained by
1070
+ applying the projection layer to the pooled output of [`Fgclip2VisionModel`].
1071
+
1072
+ Examples:
1073
+
1074
+ ```python
1075
+ >>> import torch
1076
+ >>> from transformers import AutoProcessor, AutoModel
1077
+ >>> from transformers.image_utils import load_image
1078
+
1079
+ >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
1080
+ >>> image = load_image(url)
1081
+
1082
+ >>> model = AutoModel.from_pretrained("qihoo360/fg-clip2-base")
1083
+ >>> processor = AutoProcessor.from_pretrained("qihoo360/fg-clip2-base")
1084
+
1085
+ >>> inputs = processor(images=image, return_tensors="pt")
1086
+
1087
+ >>> with torch.no_grad():
1088
+ ... image_features = model.get_image_features(**inputs)
1089
+ ```
1090
+ """
1091
+ vision_outputs: BaseModelOutputWithPooling = self.vision_model(
1092
+ pixel_values=pixel_values,
1093
+ attention_mask=pixel_attention_mask,
1094
+ spatial_shapes=spatial_shapes,
1095
+ )
1096
+ pooled_output = vision_outputs.pooler_output
1097
+
1098
+ return pooled_output
1099
+
1100
+ # NOTE: Fgclip2Model uses Pretrained backbones, so we don't need to add `check_model_inputs` here
1101
+ @can_return_tuple
1102
+ @auto_docstring
1103
+ def forward(
1104
+ self,
1105
+ input_ids: Optional[torch.LongTensor] = None,
1106
+ pixel_values: Optional[torch.FloatTensor] = None,
1107
+ pixel_attention_mask: Optional[torch.Tensor] = None,
1108
+ spatial_shapes: Optional[torch.LongTensor] = None,
1109
+ attention_mask: Optional[torch.Tensor] = None,
1110
+ position_ids: Optional[torch.LongTensor] = None,
1111
+ return_loss: Optional[bool] = None,
1112
+ output_attentions: Optional[bool] = None,
1113
+ output_hidden_states: Optional[bool] = None,
1114
+ walk_type: str = "short",
1115
+ ) -> Fgclip2Output:
1116
+ r"""
1117
+ pixel_attention_mask (`torch.Tensor` of shape `(batch_size, image_size, image_size)`, *optional*):
1118
+ Mask to avoid performing attention on padding pixel indices.
1119
+ spatial_shapes (`torch.LongTensor` of shape `(batch_size, 2)`):
1120
+ Tensor containing the spatial dimensions (height, width) of the input images.
1121
+ return_loss (`bool`, *optional*):
1122
+ Whether or not to return the contrastive loss.
1123
+ walk_type (`str`, optional, defaults to `"short"`):
1124
+ The traversal strategy used during feature extraction. Must be one of
1125
+ `"short"`, `"box"`, or `"long"`. This controls how contextual information
1126
+ is aggregated across the input:
1127
+ - `"short"`: Optimized for short-text understanding, focusing on tight semantic coherence
1128
+ and direct word interactions. Suitable when the input is a phrase or brief sentence.
1129
+ - `"box"`: Designed for local-region description processing, such as grounding in vision-language
1130
+ models or processing localized textual descriptions (e.g., object regions or segments).
1131
+ Emphasizes dense features within bounded semantic units.
1132
+ - `"long"`: Tailored for long-form text processing, enabling modeling of extended dependencies
1133
+ and discourse structure. Uses strategies like chunking or hierarchical attention to handle
1134
+ longer sequences effectively.
1135
+
1136
+
1137
+ Examples:
1138
+
1139
+ ```python
1140
+ >>> from PIL import Image
1141
+ >>> import requests
1142
+ >>> from transformers import AutoProcessor, AutoModel
1143
+ >>> import torch
1144
+
1145
+ >>> model = AutoModel.from_pretrained("qihoo360/fg-clip2-base")
1146
+ >>> processor = AutoProcessor.from_pretrained("qihoo360/fg-clip2-base")
1147
+
1148
+ >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
1149
+ >>> image = Image.open(requests.get(url, stream=True).raw)
1150
+
1151
+ >>> texts = ["a photo of 2 cats", "a photo of 2 dogs"]
1152
+ >>> # important: we pass `padding=max_length` since the model was trained with this
1153
+ >>> inputs = processor(text=texts, images=image, padding="max_length", return_tensors="pt")
1154
+
1155
+ >>> with torch.no_grad():
1156
+ ... outputs = model(**inputs)
1157
+
1158
+ >>> logits_per_image = outputs.logits_per_image
1159
+ >>> probs = torch.sigmoid(logits_per_image) # these are the probabilities
1160
+ >>> print(f"{probs[0][0]:.1%} that image 0 is '{texts[0]}'")
1161
+ 31.9% that image 0 is 'a photo of 2 cats'
1162
+ ```
1163
+ """
1164
+ walk_type = walk_type.lower()
1165
+
1166
+ if walk_type not in ["short", "box", "long"]:
1167
+ raise ValueError(f"Invalid `walk_type`: {walk_type}. Must be one of 'short', 'box', 'long'.")
1168
+
1169
+ walk_short = walk_type == "short"
1170
+ walk_box = walk_type == "box"
1171
+ walk_long = walk_type == "long"
1172
+
1173
+ # Use Fgclip2 model's config for some fields (if specified) instead of those of vision & text components.
1174
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1175
+ output_hidden_states = (
1176
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1177
+ )
1178
+
1179
+ vision_outputs: BaseModelOutputWithPooling = self.vision_model(
1180
+ pixel_values=pixel_values,
1181
+ attention_mask=pixel_attention_mask,
1182
+ spatial_shapes=spatial_shapes,
1183
+ output_attentions=output_attentions,
1184
+ output_hidden_states=output_hidden_states,
1185
+ )
1186
+
1187
+ text_outputs: BaseModelOutputWithPooling = self.text_model(
1188
+ input_ids=input_ids,
1189
+ attention_mask=attention_mask,
1190
+ position_ids=position_ids,
1191
+ output_attentions=output_attentions,
1192
+ output_hidden_states=output_hidden_states,
1193
+ walk_type=walk_type,
1194
+ )
1195
+
1196
+ image_embeds = vision_outputs.pooler_output
1197
+
1198
+ if walk_short:
1199
+ text_embeds = text_outputs.pooler_output
1200
+
1201
+ if walk_box:
1202
+ text_embeds = self.boxtext_head(text_outputs.pooler_output)
1203
+
1204
+ if walk_long:
1205
+ text_embeds = self.longtext_head(text_outputs.pooler_output)
1206
+
1207
+ # normalized features
1208
+ image_embeds = image_embeds / image_embeds.norm(p=2, dim=-1, keepdim=True)
1209
+ text_embeds = text_embeds / text_embeds.norm(p=2, dim=-1, keepdim=True)
1210
+
1211
+ # cosine similarity as logits
1212
+ logits_per_text = torch.matmul(text_embeds, image_embeds.t().to(text_embeds.device))
1213
+
1214
+ logit_scale, logit_bias = self.logit_scale.to(text_embeds.device), self.logit_bias.to(text_embeds.device)
1215
+ logits_per_text = logits_per_text * logit_scale.exp() + logit_bias
1216
+
1217
+ logits_per_image = logits_per_text.t()
1218
+
1219
+ loss = None
1220
+ if return_loss:
1221
+ # Adapted from https://github.com/google-research/big_vision/blob/01edb81a4716f93a48be43b3a4af14e29cdb3a7f/big_vision/trainers/proj/image_text/fgclip2.py#L287
1222
+ eye = torch.eye(logits_per_text.size(0), device=logits_per_text.device)
1223
+ m1_diag1 = -torch.ones_like(logits_per_text) + 2 * eye
1224
+ loglik = torch.nn.functional.logsigmoid(m1_diag1 * logits_per_text)
1225
+ nll = -torch.sum(loglik, dim=-1)
1226
+ loss = nll.mean()
1227
+
1228
+ return Fgclip2Output(
1229
+ loss=loss,
1230
+ logits_per_image=logits_per_image,
1231
+ logits_per_text=logits_per_text,
1232
+ text_embeds=text_embeds,
1233
+ image_embeds=image_embeds,
1234
+ text_model_output=text_outputs,
1235
+ vision_model_output=vision_outputs,
1236
+ )
1237
+
1238
+ # New function: Acquire dense visual features of images with support for dynamic resolution
1239
+ @filter_out_non_signature_kwargs()
1240
+ @auto_docstring
1241
+ def get_image_dense_feature(
1242
+ self,
1243
+ pixel_values: Optional[torch.FloatTensor] = None,
1244
+ pixel_attention_mask: Optional[torch.Tensor] = None,
1245
+ spatial_shapes: Optional[torch.LongTensor] = None,
1246
+ ) -> torch.FloatTensor:
1247
+ r"""
1248
+ Extract dense visual features from input images by forwarding through the vision backbone.
1249
+
1250
+ Args:
1251
+ pixel_values (`torch.FloatTensor`):
1252
+ Pixel values of shape (batch_size, max_num_patches, num_channels * patch_size * patch_size)
1253
+ pixel_attention_mask (`torch.Tensor` of shape `(batch_size, image_size, image_size)`, *optional*):
1254
+ Mask to avoid performing attention on padding pixel indices.
1255
+ spatial_shapes (`torch.LongTensor` of shape `(batch_size, 2)`):
1256
+ Tensor containing the spatial dimensions (height, width) of the input images.
1257
+
1258
+ Returns:
1259
+ `torch.FloatTensor` of shape `(batch_size, max_num_patches, hidden_size)`:
1260
+
1261
+ """
1262
+
1263
+ vision_outputs: BaseModelOutputWithPooling = self.vision_model(
1264
+ pixel_values=pixel_values,
1265
+ attention_mask=pixel_attention_mask,
1266
+ spatial_shapes=spatial_shapes,
1267
+ )
1268
+
1269
+ probe = vision_outputs.last_hidden_state
1270
+ hidden_state = vision_outputs.last_hidden_state
1271
+ attention_mask = pixel_attention_mask
1272
+
1273
+ if attention_mask is not None:
1274
+ target_len, source_len = probe.shape[1], hidden_state.shape[1]
1275
+ attention_mask = _prepare_4d_attention_mask(attention_mask, hidden_state.dtype, target_len)
1276
+ attention_mask = attention_mask.repeat(1, self.dense_feature_head.num_heads, 1, 1)
1277
+ attention_mask = attention_mask.reshape(-1, target_len, source_len)
1278
+
1279
+ hidden_state = self.dense_feature_head.attention(probe, hidden_state, hidden_state, attn_mask=attention_mask)[
1280
+ 0
1281
+ ]
1282
+ residual = hidden_state
1283
+ hidden_state = self.dense_feature_head.layernorm(hidden_state)
1284
+ hidden_state = residual + self.dense_feature_head.mlp(hidden_state)
1285
+ feature_map = hidden_state
1286
+
1287
+ return feature_map
1288
+
1289
+ # New function: Acquire local features of images, applicable to retrieval, classification, and localization, with support for dynamic resolution
1290
+ @filter_out_non_signature_kwargs()
1291
+ @auto_docstring
1292
+ def get_image_region_features(
1293
+ self,
1294
+ pixel_values: Optional[torch.FloatTensor] = None,
1295
+ pixel_attention_mask: Optional[torch.Tensor] = None,
1296
+ spatial_shapes: Optional[torch.LongTensor] = None,
1297
+ image_sizes: Optional[list[tuple]] = None,
1298
+ region_infos: Optional[list[list[list[float]]]] = None,
1299
+ ) -> list[torch.FloatTensor]:
1300
+ r"""
1301
+ Extract region-of-interest (RoI) features from images using RoI Align.
1302
+ This method supports batched processing of variable-sized images and allows feature extraction
1303
+ from user-specified image regions.
1304
+
1305
+ The input can be either a full image with corresponding region coordinates.
1306
+ Features are extracted per region (e.g., bounding boxes), making this function suitable for tasks such as
1307
+ object detection, referring expression grounding, or vision-language alignment.
1308
+
1309
+ Args:
1310
+ pixel_values (`torch.FloatTensor`):
1311
+ Pixel values of shape (batch_size, max_num_patches, num_channels * patch_size * patch_size)
1312
+ pixel_attention_mask (`torch.Tensor` of shape `(batch_size, image_size, image_size)`, *optional*):
1313
+ Mask to avoid performing attention on padding pixel indices.
1314
+ spatial_shapes (`torch.LongTensor` of shape `(batch_size, 2)`):
1315
+ Tensor containing the spatial dimensions (height, width) of the input images.
1316
+ image_sizes (`List[tuple]`, optional, each tuple of form `(int, int)`):
1317
+ Original size (height, width) of each image in the batch before padding or resizing.
1318
+ Required for accurate coordinate projection when region_infos are defined in original image space.
1319
+ region_infos (`List[List[List[float]]]`, optional):
1320
+ Bounding box coordinates for regions of interest in each image. Format:
1321
+ - Outer list: length `batch_size`
1322
+ - Middle list: number of regions per image
1323
+ - Inner list: each contains `[x_min, y_min, x_max, y_max]` in **absolute pixel coordinates**
1324
+ relative to the original image size (as specified in `image_sizes`).
1325
+ These boxes are projected to feature map space using `image_sizes` and `spatial_shapes`,
1326
+ then used to pool features via RoI Align or equivalent.
1327
+
1328
+ Returns:
1329
+ `List[torch.FloatTensor]`:
1330
+ A list of length `batch_size`, where each element is a tensor of shape
1331
+ `(num_boxes, hidden_dim)` containing the extracted visual features for each region
1332
+ in the corresponding image.
1333
+ Example::
1334
+ >>> # For a batch of 2 images
1335
+ >>> region_features = model.get_image_region_features(
1336
+ >>> pixel_values=pixel_values,
1337
+ >>> image_sizes=[(640, 480), (480, 640)],
1338
+ >>> region_infos=[
1339
+ >>> [[100, 100, 200, 200], [300, 300, 400, 400]], # 2 boxes in first image
1340
+ >>> [[50, 50, 150, 150]] # 1 box in second image
1341
+ >>> ]
1342
+ >>> )
1343
+ >>> print(region_features[0].shape) # torch.Size([2, hidden_dim])
1344
+ >>> print(region_features[1].shape) # torch.Size([1, hidden_dim])
1345
+
1346
+ """
1347
+ if region_infos is None or len(region_infos) == 0:
1348
+ return []
1349
+
1350
+ # Get dense feature maps: (B, N, D)
1351
+ dense_feature_map = self.get_image_dense_feature(
1352
+ pixel_values=pixel_values,
1353
+ pixel_attention_mask=pixel_attention_mask,
1354
+ spatial_shapes=spatial_shapes,
1355
+ )
1356
+ bs, _, hidden_dim = dense_feature_map.shape
1357
+
1358
+ all_region_features = []
1359
+
1360
+ for i in range(bs):
1361
+ h, w = spatial_shapes[i].tolist()
1362
+ img_h, img_w = image_sizes[i]
1363
+ bboxes = region_infos[i]
1364
+
1365
+ if not bboxes:
1366
+ all_region_features.append(torch.empty(0, hidden_dim, device=dense_feature_map.device))
1367
+ continue
1368
+
1369
+ # Reshape to (1, C, H', W')
1370
+ num_valid = h * w
1371
+ feat_seq = dense_feature_map[i, :num_valid] # (num_valid, D)
1372
+ feat_map = feat_seq.view(h, w, hidden_dim).permute(2, 0, 1).unsqueeze(0) # (1, D, H', W')
1373
+
1374
+ # Normalize bboxes to feature map coordinates
1375
+ rois = []
1376
+ for x1, y1, x2, y2 in bboxes:
1377
+ nx1 = (x1 / img_w) * w
1378
+ ny1 = (y1 / img_h) * h
1379
+ nx2 = (x2 / img_w) * w
1380
+ ny2 = (y2 / img_h) * h
1381
+ rois.append([0, nx1, ny1, nx2, ny2]) #
1382
+ rois_tensor = torch.tensor(rois, dtype=torch.float32, device=feat_map.device) # (N, 5)
1383
+
1384
+ # RoI Align on single image
1385
+ pooled = roi_align(
1386
+ input=feat_map,
1387
+ boxes=rois_tensor,
1388
+ output_size=(1, 1),
1389
+ spatial_scale=1.0,
1390
+ sampling_ratio=-1,
1391
+ aligned=True,
1392
+ ) # (N, D, 1, 1)
1393
+ region_feats = pooled.squeeze(-1).squeeze(-1) # (N, D)
1394
+
1395
+ all_region_features.append(region_feats)
1396
+
1397
+ return all_region_features
1398
+
1399
+
1400
+ __all__ = ["Fgclip2Model", "Fgclip2PreTrainedModel", "Fgclip2TextModel", "Fgclip2VisionModel"]
preprocessor_config.json ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_convert_rgb": null,
3
+ "do_normalize": true,
4
+ "do_rescale": true,
5
+ "do_resize": true,
6
+ "image_mean": [
7
+ 0.5,
8
+ 0.5,
9
+ 0.5
10
+ ],
11
+ "image_processor_type": "Siglip2ImageProcessorFast",
12
+ "image_std": [
13
+ 0.5,
14
+ 0.5,
15
+ 0.5
16
+ ],
17
+ "max_num_patches": 256,
18
+ "patch_size": 16,
19
+ "processor_class": "Siglip2Processor",
20
+ "resample": 2,
21
+ "rescale_factor": 0.00392156862745098
22
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<start_of_turn>",
4
+ "<end_of_turn>"
5
+ ],
6
+ "bos_token": {
7
+ "content": "<bos>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false
12
+ },
13
+ "eos_token": {
14
+ "content": "<eos>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false
19
+ },
20
+ "pad_token": {
21
+ "content": "<pad>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false
26
+ },
27
+ "unk_token": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false
33
+ }
34
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:58a1696e79c9d97937389ed116f552a15c84811d7b8023918b86f4bc5775b1b0
3
+ size 34356304
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:61a7b147390c64585d6c3543dd6fc636906c9af3865a5548f27f31aee1d4c8e2
3
+ size 4241003
tokenizer_config.json ADDED
@@ -0,0 +1,1763 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_eos_token": true,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<pad>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<eos>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "<bos>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "3": {
30
+ "content": "<unk>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "4": {
38
+ "content": "<mask>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": false
44
+ },
45
+ "5": {
46
+ "content": "<2mass>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": false
52
+ },
53
+ "6": {
54
+ "content": "[@BOS@]",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": false
60
+ },
61
+ "7": {
62
+ "content": "<unused0>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": false
68
+ },
69
+ "8": {
70
+ "content": "<unused1>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": false
76
+ },
77
+ "9": {
78
+ "content": "<unused2>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": false
84
+ },
85
+ "10": {
86
+ "content": "<unused3>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": false
92
+ },
93
+ "11": {
94
+ "content": "<unused4>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": false
100
+ },
101
+ "12": {
102
+ "content": "<unused5>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": false
108
+ },
109
+ "13": {
110
+ "content": "<unused6>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": false
116
+ },
117
+ "14": {
118
+ "content": "<unused7>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "15": {
126
+ "content": "<unused8>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "16": {
134
+ "content": "<unused9>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "17": {
142
+ "content": "<unused10>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "18": {
150
+ "content": "<unused11>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "19": {
158
+ "content": "<unused12>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "20": {
166
+ "content": "<unused13>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "21": {
174
+ "content": "<unused14>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ },
181
+ "22": {
182
+ "content": "<unused15>",
183
+ "lstrip": false,
184
+ "normalized": false,
185
+ "rstrip": false,
186
+ "single_word": false,
187
+ "special": false
188
+ },
189
+ "23": {
190
+ "content": "<unused16>",
191
+ "lstrip": false,
192
+ "normalized": false,
193
+ "rstrip": false,
194
+ "single_word": false,
195
+ "special": false
196
+ },
197
+ "24": {
198
+ "content": "<unused17>",
199
+ "lstrip": false,
200
+ "normalized": false,
201
+ "rstrip": false,
202
+ "single_word": false,
203
+ "special": false
204
+ },
205
+ "25": {
206
+ "content": "<unused18>",
207
+ "lstrip": false,
208
+ "normalized": false,
209
+ "rstrip": false,
210
+ "single_word": false,
211
+ "special": false
212
+ },
213
+ "26": {
214
+ "content": "<unused19>",
215
+ "lstrip": false,
216
+ "normalized": false,
217
+ "rstrip": false,
218
+ "single_word": false,
219
+ "special": false
220
+ },
221
+ "27": {
222
+ "content": "<unused20>",
223
+ "lstrip": false,
224
+ "normalized": false,
225
+ "rstrip": false,
226
+ "single_word": false,
227
+ "special": false
228
+ },
229
+ "28": {
230
+ "content": "<unused21>",
231
+ "lstrip": false,
232
+ "normalized": false,
233
+ "rstrip": false,
234
+ "single_word": false,
235
+ "special": false
236
+ },
237
+ "29": {
238
+ "content": "<unused22>",
239
+ "lstrip": false,
240
+ "normalized": false,
241
+ "rstrip": false,
242
+ "single_word": false,
243
+ "special": false
244
+ },
245
+ "30": {
246
+ "content": "<unused23>",
247
+ "lstrip": false,
248
+ "normalized": false,
249
+ "rstrip": false,
250
+ "single_word": false,
251
+ "special": false
252
+ },
253
+ "31": {
254
+ "content": "<unused24>",
255
+ "lstrip": false,
256
+ "normalized": false,
257
+ "rstrip": false,
258
+ "single_word": false,
259
+ "special": false
260
+ },
261
+ "32": {
262
+ "content": "<unused25>",
263
+ "lstrip": false,
264
+ "normalized": false,
265
+ "rstrip": false,
266
+ "single_word": false,
267
+ "special": false
268
+ },
269
+ "33": {
270
+ "content": "<unused26>",
271
+ "lstrip": false,
272
+ "normalized": false,
273
+ "rstrip": false,
274
+ "single_word": false,
275
+ "special": false
276
+ },
277
+ "34": {
278
+ "content": "<unused27>",
279
+ "lstrip": false,
280
+ "normalized": false,
281
+ "rstrip": false,
282
+ "single_word": false,
283
+ "special": false
284
+ },
285
+ "35": {
286
+ "content": "<unused28>",
287
+ "lstrip": false,
288
+ "normalized": false,
289
+ "rstrip": false,
290
+ "single_word": false,
291
+ "special": false
292
+ },
293
+ "36": {
294
+ "content": "<unused29>",
295
+ "lstrip": false,
296
+ "normalized": false,
297
+ "rstrip": false,
298
+ "single_word": false,
299
+ "special": false
300
+ },
301
+ "37": {
302
+ "content": "<unused30>",
303
+ "lstrip": false,
304
+ "normalized": false,
305
+ "rstrip": false,
306
+ "single_word": false,
307
+ "special": false
308
+ },
309
+ "38": {
310
+ "content": "<unused31>",
311
+ "lstrip": false,
312
+ "normalized": false,
313
+ "rstrip": false,
314
+ "single_word": false,
315
+ "special": false
316
+ },
317
+ "39": {
318
+ "content": "<unused32>",
319
+ "lstrip": false,
320
+ "normalized": false,
321
+ "rstrip": false,
322
+ "single_word": false,
323
+ "special": false
324
+ },
325
+ "40": {
326
+ "content": "<unused33>",
327
+ "lstrip": false,
328
+ "normalized": false,
329
+ "rstrip": false,
330
+ "single_word": false,
331
+ "special": false
332
+ },
333
+ "41": {
334
+ "content": "<unused34>",
335
+ "lstrip": false,
336
+ "normalized": false,
337
+ "rstrip": false,
338
+ "single_word": false,
339
+ "special": false
340
+ },
341
+ "42": {
342
+ "content": "<unused35>",
343
+ "lstrip": false,
344
+ "normalized": false,
345
+ "rstrip": false,
346
+ "single_word": false,
347
+ "special": false
348
+ },
349
+ "43": {
350
+ "content": "<unused36>",
351
+ "lstrip": false,
352
+ "normalized": false,
353
+ "rstrip": false,
354
+ "single_word": false,
355
+ "special": false
356
+ },
357
+ "44": {
358
+ "content": "<unused37>",
359
+ "lstrip": false,
360
+ "normalized": false,
361
+ "rstrip": false,
362
+ "single_word": false,
363
+ "special": false
364
+ },
365
+ "45": {
366
+ "content": "<unused38>",
367
+ "lstrip": false,
368
+ "normalized": false,
369
+ "rstrip": false,
370
+ "single_word": false,
371
+ "special": false
372
+ },
373
+ "46": {
374
+ "content": "<unused39>",
375
+ "lstrip": false,
376
+ "normalized": false,
377
+ "rstrip": false,
378
+ "single_word": false,
379
+ "special": false
380
+ },
381
+ "47": {
382
+ "content": "<unused40>",
383
+ "lstrip": false,
384
+ "normalized": false,
385
+ "rstrip": false,
386
+ "single_word": false,
387
+ "special": false
388
+ },
389
+ "48": {
390
+ "content": "<unused41>",
391
+ "lstrip": false,
392
+ "normalized": false,
393
+ "rstrip": false,
394
+ "single_word": false,
395
+ "special": false
396
+ },
397
+ "49": {
398
+ "content": "<unused42>",
399
+ "lstrip": false,
400
+ "normalized": false,
401
+ "rstrip": false,
402
+ "single_word": false,
403
+ "special": false
404
+ },
405
+ "50": {
406
+ "content": "<unused43>",
407
+ "lstrip": false,
408
+ "normalized": false,
409
+ "rstrip": false,
410
+ "single_word": false,
411
+ "special": false
412
+ },
413
+ "51": {
414
+ "content": "<unused44>",
415
+ "lstrip": false,
416
+ "normalized": false,
417
+ "rstrip": false,
418
+ "single_word": false,
419
+ "special": false
420
+ },
421
+ "52": {
422
+ "content": "<unused45>",
423
+ "lstrip": false,
424
+ "normalized": false,
425
+ "rstrip": false,
426
+ "single_word": false,
427
+ "special": false
428
+ },
429
+ "53": {
430
+ "content": "<unused46>",
431
+ "lstrip": false,
432
+ "normalized": false,
433
+ "rstrip": false,
434
+ "single_word": false,
435
+ "special": false
436
+ },
437
+ "54": {
438
+ "content": "<unused47>",
439
+ "lstrip": false,
440
+ "normalized": false,
441
+ "rstrip": false,
442
+ "single_word": false,
443
+ "special": false
444
+ },
445
+ "55": {
446
+ "content": "<unused48>",
447
+ "lstrip": false,
448
+ "normalized": false,
449
+ "rstrip": false,
450
+ "single_word": false,
451
+ "special": false
452
+ },
453
+ "56": {
454
+ "content": "<unused49>",
455
+ "lstrip": false,
456
+ "normalized": false,
457
+ "rstrip": false,
458
+ "single_word": false,
459
+ "special": false
460
+ },
461
+ "57": {
462
+ "content": "<unused50>",
463
+ "lstrip": false,
464
+ "normalized": false,
465
+ "rstrip": false,
466
+ "single_word": false,
467
+ "special": false
468
+ },
469
+ "58": {
470
+ "content": "<unused51>",
471
+ "lstrip": false,
472
+ "normalized": false,
473
+ "rstrip": false,
474
+ "single_word": false,
475
+ "special": false
476
+ },
477
+ "59": {
478
+ "content": "<unused52>",
479
+ "lstrip": false,
480
+ "normalized": false,
481
+ "rstrip": false,
482
+ "single_word": false,
483
+ "special": false
484
+ },
485
+ "60": {
486
+ "content": "<unused53>",
487
+ "lstrip": false,
488
+ "normalized": false,
489
+ "rstrip": false,
490
+ "single_word": false,
491
+ "special": false
492
+ },
493
+ "61": {
494
+ "content": "<unused54>",
495
+ "lstrip": false,
496
+ "normalized": false,
497
+ "rstrip": false,
498
+ "single_word": false,
499
+ "special": false
500
+ },
501
+ "62": {
502
+ "content": "<unused55>",
503
+ "lstrip": false,
504
+ "normalized": false,
505
+ "rstrip": false,
506
+ "single_word": false,
507
+ "special": false
508
+ },
509
+ "63": {
510
+ "content": "<unused56>",
511
+ "lstrip": false,
512
+ "normalized": false,
513
+ "rstrip": false,
514
+ "single_word": false,
515
+ "special": false
516
+ },
517
+ "64": {
518
+ "content": "<unused57>",
519
+ "lstrip": false,
520
+ "normalized": false,
521
+ "rstrip": false,
522
+ "single_word": false,
523
+ "special": false
524
+ },
525
+ "65": {
526
+ "content": "<unused58>",
527
+ "lstrip": false,
528
+ "normalized": false,
529
+ "rstrip": false,
530
+ "single_word": false,
531
+ "special": false
532
+ },
533
+ "66": {
534
+ "content": "<unused59>",
535
+ "lstrip": false,
536
+ "normalized": false,
537
+ "rstrip": false,
538
+ "single_word": false,
539
+ "special": false
540
+ },
541
+ "67": {
542
+ "content": "<unused60>",
543
+ "lstrip": false,
544
+ "normalized": false,
545
+ "rstrip": false,
546
+ "single_word": false,
547
+ "special": false
548
+ },
549
+ "68": {
550
+ "content": "<unused61>",
551
+ "lstrip": false,
552
+ "normalized": false,
553
+ "rstrip": false,
554
+ "single_word": false,
555
+ "special": false
556
+ },
557
+ "69": {
558
+ "content": "<unused62>",
559
+ "lstrip": false,
560
+ "normalized": false,
561
+ "rstrip": false,
562
+ "single_word": false,
563
+ "special": false
564
+ },
565
+ "70": {
566
+ "content": "<unused63>",
567
+ "lstrip": false,
568
+ "normalized": false,
569
+ "rstrip": false,
570
+ "single_word": false,
571
+ "special": false
572
+ },
573
+ "71": {
574
+ "content": "<unused64>",
575
+ "lstrip": false,
576
+ "normalized": false,
577
+ "rstrip": false,
578
+ "single_word": false,
579
+ "special": false
580
+ },
581
+ "72": {
582
+ "content": "<unused65>",
583
+ "lstrip": false,
584
+ "normalized": false,
585
+ "rstrip": false,
586
+ "single_word": false,
587
+ "special": false
588
+ },
589
+ "73": {
590
+ "content": "<unused66>",
591
+ "lstrip": false,
592
+ "normalized": false,
593
+ "rstrip": false,
594
+ "single_word": false,
595
+ "special": false
596
+ },
597
+ "74": {
598
+ "content": "<unused67>",
599
+ "lstrip": false,
600
+ "normalized": false,
601
+ "rstrip": false,
602
+ "single_word": false,
603
+ "special": false
604
+ },
605
+ "75": {
606
+ "content": "<unused68>",
607
+ "lstrip": false,
608
+ "normalized": false,
609
+ "rstrip": false,
610
+ "single_word": false,
611
+ "special": false
612
+ },
613
+ "76": {
614
+ "content": "<unused69>",
615
+ "lstrip": false,
616
+ "normalized": false,
617
+ "rstrip": false,
618
+ "single_word": false,
619
+ "special": false
620
+ },
621
+ "77": {
622
+ "content": "<unused70>",
623
+ "lstrip": false,
624
+ "normalized": false,
625
+ "rstrip": false,
626
+ "single_word": false,
627
+ "special": false
628
+ },
629
+ "78": {
630
+ "content": "<unused71>",
631
+ "lstrip": false,
632
+ "normalized": false,
633
+ "rstrip": false,
634
+ "single_word": false,
635
+ "special": false
636
+ },
637
+ "79": {
638
+ "content": "<unused72>",
639
+ "lstrip": false,
640
+ "normalized": false,
641
+ "rstrip": false,
642
+ "single_word": false,
643
+ "special": false
644
+ },
645
+ "80": {
646
+ "content": "<unused73>",
647
+ "lstrip": false,
648
+ "normalized": false,
649
+ "rstrip": false,
650
+ "single_word": false,
651
+ "special": false
652
+ },
653
+ "81": {
654
+ "content": "<unused74>",
655
+ "lstrip": false,
656
+ "normalized": false,
657
+ "rstrip": false,
658
+ "single_word": false,
659
+ "special": false
660
+ },
661
+ "82": {
662
+ "content": "<unused75>",
663
+ "lstrip": false,
664
+ "normalized": false,
665
+ "rstrip": false,
666
+ "single_word": false,
667
+ "special": false
668
+ },
669
+ "83": {
670
+ "content": "<unused76>",
671
+ "lstrip": false,
672
+ "normalized": false,
673
+ "rstrip": false,
674
+ "single_word": false,
675
+ "special": false
676
+ },
677
+ "84": {
678
+ "content": "<unused77>",
679
+ "lstrip": false,
680
+ "normalized": false,
681
+ "rstrip": false,
682
+ "single_word": false,
683
+ "special": false
684
+ },
685
+ "85": {
686
+ "content": "<unused78>",
687
+ "lstrip": false,
688
+ "normalized": false,
689
+ "rstrip": false,
690
+ "single_word": false,
691
+ "special": false
692
+ },
693
+ "86": {
694
+ "content": "<unused79>",
695
+ "lstrip": false,
696
+ "normalized": false,
697
+ "rstrip": false,
698
+ "single_word": false,
699
+ "special": false
700
+ },
701
+ "87": {
702
+ "content": "<unused80>",
703
+ "lstrip": false,
704
+ "normalized": false,
705
+ "rstrip": false,
706
+ "single_word": false,
707
+ "special": false
708
+ },
709
+ "88": {
710
+ "content": "<unused81>",
711
+ "lstrip": false,
712
+ "normalized": false,
713
+ "rstrip": false,
714
+ "single_word": false,
715
+ "special": false
716
+ },
717
+ "89": {
718
+ "content": "<unused82>",
719
+ "lstrip": false,
720
+ "normalized": false,
721
+ "rstrip": false,
722
+ "single_word": false,
723
+ "special": false
724
+ },
725
+ "90": {
726
+ "content": "<unused83>",
727
+ "lstrip": false,
728
+ "normalized": false,
729
+ "rstrip": false,
730
+ "single_word": false,
731
+ "special": false
732
+ },
733
+ "91": {
734
+ "content": "<unused84>",
735
+ "lstrip": false,
736
+ "normalized": false,
737
+ "rstrip": false,
738
+ "single_word": false,
739
+ "special": false
740
+ },
741
+ "92": {
742
+ "content": "<unused85>",
743
+ "lstrip": false,
744
+ "normalized": false,
745
+ "rstrip": false,
746
+ "single_word": false,
747
+ "special": false
748
+ },
749
+ "93": {
750
+ "content": "<unused86>",
751
+ "lstrip": false,
752
+ "normalized": false,
753
+ "rstrip": false,
754
+ "single_word": false,
755
+ "special": false
756
+ },
757
+ "94": {
758
+ "content": "<unused87>",
759
+ "lstrip": false,
760
+ "normalized": false,
761
+ "rstrip": false,
762
+ "single_word": false,
763
+ "special": false
764
+ },
765
+ "95": {
766
+ "content": "<unused88>",
767
+ "lstrip": false,
768
+ "normalized": false,
769
+ "rstrip": false,
770
+ "single_word": false,
771
+ "special": false
772
+ },
773
+ "96": {
774
+ "content": "<unused89>",
775
+ "lstrip": false,
776
+ "normalized": false,
777
+ "rstrip": false,
778
+ "single_word": false,
779
+ "special": false
780
+ },
781
+ "97": {
782
+ "content": "<unused90>",
783
+ "lstrip": false,
784
+ "normalized": false,
785
+ "rstrip": false,
786
+ "single_word": false,
787
+ "special": false
788
+ },
789
+ "98": {
790
+ "content": "<unused91>",
791
+ "lstrip": false,
792
+ "normalized": false,
793
+ "rstrip": false,
794
+ "single_word": false,
795
+ "special": false
796
+ },
797
+ "99": {
798
+ "content": "<unused92>",
799
+ "lstrip": false,
800
+ "normalized": false,
801
+ "rstrip": false,
802
+ "single_word": false,
803
+ "special": false
804
+ },
805
+ "100": {
806
+ "content": "<unused93>",
807
+ "lstrip": false,
808
+ "normalized": false,
809
+ "rstrip": false,
810
+ "single_word": false,
811
+ "special": false
812
+ },
813
+ "101": {
814
+ "content": "<unused94>",
815
+ "lstrip": false,
816
+ "normalized": false,
817
+ "rstrip": false,
818
+ "single_word": false,
819
+ "special": false
820
+ },
821
+ "102": {
822
+ "content": "<unused95>",
823
+ "lstrip": false,
824
+ "normalized": false,
825
+ "rstrip": false,
826
+ "single_word": false,
827
+ "special": false
828
+ },
829
+ "103": {
830
+ "content": "<unused96>",
831
+ "lstrip": false,
832
+ "normalized": false,
833
+ "rstrip": false,
834
+ "single_word": false,
835
+ "special": false
836
+ },
837
+ "104": {
838
+ "content": "<unused97>",
839
+ "lstrip": false,
840
+ "normalized": false,
841
+ "rstrip": false,
842
+ "single_word": false,
843
+ "special": false
844
+ },
845
+ "105": {
846
+ "content": "<unused98>",
847
+ "lstrip": false,
848
+ "normalized": false,
849
+ "rstrip": false,
850
+ "single_word": false,
851
+ "special": false
852
+ },
853
+ "106": {
854
+ "content": "<start_of_turn>",
855
+ "lstrip": false,
856
+ "normalized": false,
857
+ "rstrip": false,
858
+ "single_word": false,
859
+ "special": true
860
+ },
861
+ "107": {
862
+ "content": "<end_of_turn>",
863
+ "lstrip": false,
864
+ "normalized": false,
865
+ "rstrip": false,
866
+ "single_word": false,
867
+ "special": true
868
+ },
869
+ "108": {
870
+ "content": "\n",
871
+ "lstrip": false,
872
+ "normalized": false,
873
+ "rstrip": false,
874
+ "single_word": false,
875
+ "special": false
876
+ },
877
+ "109": {
878
+ "content": "\n\n",
879
+ "lstrip": false,
880
+ "normalized": false,
881
+ "rstrip": false,
882
+ "single_word": false,
883
+ "special": false
884
+ },
885
+ "110": {
886
+ "content": "\n\n\n",
887
+ "lstrip": false,
888
+ "normalized": false,
889
+ "rstrip": false,
890
+ "single_word": false,
891
+ "special": false
892
+ },
893
+ "111": {
894
+ "content": "\n\n\n\n",
895
+ "lstrip": false,
896
+ "normalized": false,
897
+ "rstrip": false,
898
+ "single_word": false,
899
+ "special": false
900
+ },
901
+ "112": {
902
+ "content": "\n\n\n\n\n",
903
+ "lstrip": false,
904
+ "normalized": false,
905
+ "rstrip": false,
906
+ "single_word": false,
907
+ "special": false
908
+ },
909
+ "113": {
910
+ "content": "\n\n\n\n\n\n",
911
+ "lstrip": false,
912
+ "normalized": false,
913
+ "rstrip": false,
914
+ "single_word": false,
915
+ "special": false
916
+ },
917
+ "114": {
918
+ "content": "\n\n\n\n\n\n\n",
919
+ "lstrip": false,
920
+ "normalized": false,
921
+ "rstrip": false,
922
+ "single_word": false,
923
+ "special": false
924
+ },
925
+ "115": {
926
+ "content": "\n\n\n\n\n\n\n\n",
927
+ "lstrip": false,
928
+ "normalized": false,
929
+ "rstrip": false,
930
+ "single_word": false,
931
+ "special": false
932
+ },
933
+ "116": {
934
+ "content": "\n\n\n\n\n\n\n\n\n",
935
+ "lstrip": false,
936
+ "normalized": false,
937
+ "rstrip": false,
938
+ "single_word": false,
939
+ "special": false
940
+ },
941
+ "117": {
942
+ "content": "\n\n\n\n\n\n\n\n\n\n",
943
+ "lstrip": false,
944
+ "normalized": false,
945
+ "rstrip": false,
946
+ "single_word": false,
947
+ "special": false
948
+ },
949
+ "118": {
950
+ "content": "\n\n\n\n\n\n\n\n\n\n\n",
951
+ "lstrip": false,
952
+ "normalized": false,
953
+ "rstrip": false,
954
+ "single_word": false,
955
+ "special": false
956
+ },
957
+ "119": {
958
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n",
959
+ "lstrip": false,
960
+ "normalized": false,
961
+ "rstrip": false,
962
+ "single_word": false,
963
+ "special": false
964
+ },
965
+ "120": {
966
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n",
967
+ "lstrip": false,
968
+ "normalized": false,
969
+ "rstrip": false,
970
+ "single_word": false,
971
+ "special": false
972
+ },
973
+ "121": {
974
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
975
+ "lstrip": false,
976
+ "normalized": false,
977
+ "rstrip": false,
978
+ "single_word": false,
979
+ "special": false
980
+ },
981
+ "122": {
982
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
983
+ "lstrip": false,
984
+ "normalized": false,
985
+ "rstrip": false,
986
+ "single_word": false,
987
+ "special": false
988
+ },
989
+ "123": {
990
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
991
+ "lstrip": false,
992
+ "normalized": false,
993
+ "rstrip": false,
994
+ "single_word": false,
995
+ "special": false
996
+ },
997
+ "124": {
998
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
999
+ "lstrip": false,
1000
+ "normalized": false,
1001
+ "rstrip": false,
1002
+ "single_word": false,
1003
+ "special": false
1004
+ },
1005
+ "125": {
1006
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1007
+ "lstrip": false,
1008
+ "normalized": false,
1009
+ "rstrip": false,
1010
+ "single_word": false,
1011
+ "special": false
1012
+ },
1013
+ "126": {
1014
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1015
+ "lstrip": false,
1016
+ "normalized": false,
1017
+ "rstrip": false,
1018
+ "single_word": false,
1019
+ "special": false
1020
+ },
1021
+ "127": {
1022
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1023
+ "lstrip": false,
1024
+ "normalized": false,
1025
+ "rstrip": false,
1026
+ "single_word": false,
1027
+ "special": false
1028
+ },
1029
+ "128": {
1030
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1031
+ "lstrip": false,
1032
+ "normalized": false,
1033
+ "rstrip": false,
1034
+ "single_word": false,
1035
+ "special": false
1036
+ },
1037
+ "129": {
1038
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1039
+ "lstrip": false,
1040
+ "normalized": false,
1041
+ "rstrip": false,
1042
+ "single_word": false,
1043
+ "special": false
1044
+ },
1045
+ "130": {
1046
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1047
+ "lstrip": false,
1048
+ "normalized": false,
1049
+ "rstrip": false,
1050
+ "single_word": false,
1051
+ "special": false
1052
+ },
1053
+ "131": {
1054
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1055
+ "lstrip": false,
1056
+ "normalized": false,
1057
+ "rstrip": false,
1058
+ "single_word": false,
1059
+ "special": false
1060
+ },
1061
+ "132": {
1062
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1063
+ "lstrip": false,
1064
+ "normalized": false,
1065
+ "rstrip": false,
1066
+ "single_word": false,
1067
+ "special": false
1068
+ },
1069
+ "133": {
1070
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1071
+ "lstrip": false,
1072
+ "normalized": false,
1073
+ "rstrip": false,
1074
+ "single_word": false,
1075
+ "special": false
1076
+ },
1077
+ "134": {
1078
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1079
+ "lstrip": false,
1080
+ "normalized": false,
1081
+ "rstrip": false,
1082
+ "single_word": false,
1083
+ "special": false
1084
+ },
1085
+ "135": {
1086
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1087
+ "lstrip": false,
1088
+ "normalized": false,
1089
+ "rstrip": false,
1090
+ "single_word": false,
1091
+ "special": false
1092
+ },
1093
+ "136": {
1094
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1095
+ "lstrip": false,
1096
+ "normalized": false,
1097
+ "rstrip": false,
1098
+ "single_word": false,
1099
+ "special": false
1100
+ },
1101
+ "137": {
1102
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1103
+ "lstrip": false,
1104
+ "normalized": false,
1105
+ "rstrip": false,
1106
+ "single_word": false,
1107
+ "special": false
1108
+ },
1109
+ "138": {
1110
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1111
+ "lstrip": false,
1112
+ "normalized": false,
1113
+ "rstrip": false,
1114
+ "single_word": false,
1115
+ "special": false
1116
+ },
1117
+ "139": {
1118
+ "content": "▁▁",
1119
+ "lstrip": false,
1120
+ "normalized": false,
1121
+ "rstrip": false,
1122
+ "single_word": false,
1123
+ "special": false
1124
+ },
1125
+ "140": {
1126
+ "content": "▁▁▁",
1127
+ "lstrip": false,
1128
+ "normalized": false,
1129
+ "rstrip": false,
1130
+ "single_word": false,
1131
+ "special": false
1132
+ },
1133
+ "141": {
1134
+ "content": "▁▁▁▁",
1135
+ "lstrip": false,
1136
+ "normalized": false,
1137
+ "rstrip": false,
1138
+ "single_word": false,
1139
+ "special": false
1140
+ },
1141
+ "142": {
1142
+ "content": "▁▁▁▁▁",
1143
+ "lstrip": false,
1144
+ "normalized": false,
1145
+ "rstrip": false,
1146
+ "single_word": false,
1147
+ "special": false
1148
+ },
1149
+ "143": {
1150
+ "content": "▁▁▁▁▁▁",
1151
+ "lstrip": false,
1152
+ "normalized": false,
1153
+ "rstrip": false,
1154
+ "single_word": false,
1155
+ "special": false
1156
+ },
1157
+ "144": {
1158
+ "content": "▁▁▁▁▁▁▁",
1159
+ "lstrip": false,
1160
+ "normalized": false,
1161
+ "rstrip": false,
1162
+ "single_word": false,
1163
+ "special": false
1164
+ },
1165
+ "145": {
1166
+ "content": "▁▁▁▁▁▁▁▁",
1167
+ "lstrip": false,
1168
+ "normalized": false,
1169
+ "rstrip": false,
1170
+ "single_word": false,
1171
+ "special": false
1172
+ },
1173
+ "146": {
1174
+ "content": "▁▁▁▁▁▁▁▁▁",
1175
+ "lstrip": false,
1176
+ "normalized": false,
1177
+ "rstrip": false,
1178
+ "single_word": false,
1179
+ "special": false
1180
+ },
1181
+ "147": {
1182
+ "content": "▁▁▁▁▁▁▁▁▁▁",
1183
+ "lstrip": false,
1184
+ "normalized": false,
1185
+ "rstrip": false,
1186
+ "single_word": false,
1187
+ "special": false
1188
+ },
1189
+ "148": {
1190
+ "content": "▁▁▁▁▁▁▁▁▁▁▁",
1191
+ "lstrip": false,
1192
+ "normalized": false,
1193
+ "rstrip": false,
1194
+ "single_word": false,
1195
+ "special": false
1196
+ },
1197
+ "149": {
1198
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁",
1199
+ "lstrip": false,
1200
+ "normalized": false,
1201
+ "rstrip": false,
1202
+ "single_word": false,
1203
+ "special": false
1204
+ },
1205
+ "150": {
1206
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁",
1207
+ "lstrip": false,
1208
+ "normalized": false,
1209
+ "rstrip": false,
1210
+ "single_word": false,
1211
+ "special": false
1212
+ },
1213
+ "151": {
1214
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1215
+ "lstrip": false,
1216
+ "normalized": false,
1217
+ "rstrip": false,
1218
+ "single_word": false,
1219
+ "special": false
1220
+ },
1221
+ "152": {
1222
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1223
+ "lstrip": false,
1224
+ "normalized": false,
1225
+ "rstrip": false,
1226
+ "single_word": false,
1227
+ "special": false
1228
+ },
1229
+ "153": {
1230
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1231
+ "lstrip": false,
1232
+ "normalized": false,
1233
+ "rstrip": false,
1234
+ "single_word": false,
1235
+ "special": false
1236
+ },
1237
+ "154": {
1238
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1239
+ "lstrip": false,
1240
+ "normalized": false,
1241
+ "rstrip": false,
1242
+ "single_word": false,
1243
+ "special": false
1244
+ },
1245
+ "155": {
1246
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1247
+ "lstrip": false,
1248
+ "normalized": false,
1249
+ "rstrip": false,
1250
+ "single_word": false,
1251
+ "special": false
1252
+ },
1253
+ "156": {
1254
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1255
+ "lstrip": false,
1256
+ "normalized": false,
1257
+ "rstrip": false,
1258
+ "single_word": false,
1259
+ "special": false
1260
+ },
1261
+ "157": {
1262
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1263
+ "lstrip": false,
1264
+ "normalized": false,
1265
+ "rstrip": false,
1266
+ "single_word": false,
1267
+ "special": false
1268
+ },
1269
+ "158": {
1270
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1271
+ "lstrip": false,
1272
+ "normalized": false,
1273
+ "rstrip": false,
1274
+ "single_word": false,
1275
+ "special": false
1276
+ },
1277
+ "159": {
1278
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1279
+ "lstrip": false,
1280
+ "normalized": false,
1281
+ "rstrip": false,
1282
+ "single_word": false,
1283
+ "special": false
1284
+ },
1285
+ "160": {
1286
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1287
+ "lstrip": false,
1288
+ "normalized": false,
1289
+ "rstrip": false,
1290
+ "single_word": false,
1291
+ "special": false
1292
+ },
1293
+ "161": {
1294
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1295
+ "lstrip": false,
1296
+ "normalized": false,
1297
+ "rstrip": false,
1298
+ "single_word": false,
1299
+ "special": false
1300
+ },
1301
+ "162": {
1302
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1303
+ "lstrip": false,
1304
+ "normalized": false,
1305
+ "rstrip": false,
1306
+ "single_word": false,
1307
+ "special": false
1308
+ },
1309
+ "163": {
1310
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1311
+ "lstrip": false,
1312
+ "normalized": false,
1313
+ "rstrip": false,
1314
+ "single_word": false,
1315
+ "special": false
1316
+ },
1317
+ "164": {
1318
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1319
+ "lstrip": false,
1320
+ "normalized": false,
1321
+ "rstrip": false,
1322
+ "single_word": false,
1323
+ "special": false
1324
+ },
1325
+ "165": {
1326
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1327
+ "lstrip": false,
1328
+ "normalized": false,
1329
+ "rstrip": false,
1330
+ "single_word": false,
1331
+ "special": false
1332
+ },
1333
+ "166": {
1334
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1335
+ "lstrip": false,
1336
+ "normalized": false,
1337
+ "rstrip": false,
1338
+ "single_word": false,
1339
+ "special": false
1340
+ },
1341
+ "167": {
1342
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1343
+ "lstrip": false,
1344
+ "normalized": false,
1345
+ "rstrip": false,
1346
+ "single_word": false,
1347
+ "special": false
1348
+ },
1349
+ "168": {
1350
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1351
+ "lstrip": false,
1352
+ "normalized": false,
1353
+ "rstrip": false,
1354
+ "single_word": false,
1355
+ "special": false
1356
+ },
1357
+ "169": {
1358
+ "content": "<table>",
1359
+ "lstrip": false,
1360
+ "normalized": false,
1361
+ "rstrip": false,
1362
+ "single_word": false,
1363
+ "special": false
1364
+ },
1365
+ "170": {
1366
+ "content": "<caption>",
1367
+ "lstrip": false,
1368
+ "normalized": false,
1369
+ "rstrip": false,
1370
+ "single_word": false,
1371
+ "special": false
1372
+ },
1373
+ "171": {
1374
+ "content": "<thead>",
1375
+ "lstrip": false,
1376
+ "normalized": false,
1377
+ "rstrip": false,
1378
+ "single_word": false,
1379
+ "special": false
1380
+ },
1381
+ "172": {
1382
+ "content": "<tbody>",
1383
+ "lstrip": false,
1384
+ "normalized": false,
1385
+ "rstrip": false,
1386
+ "single_word": false,
1387
+ "special": false
1388
+ },
1389
+ "173": {
1390
+ "content": "<tfoot>",
1391
+ "lstrip": false,
1392
+ "normalized": false,
1393
+ "rstrip": false,
1394
+ "single_word": false,
1395
+ "special": false
1396
+ },
1397
+ "174": {
1398
+ "content": "<tr>",
1399
+ "lstrip": false,
1400
+ "normalized": false,
1401
+ "rstrip": false,
1402
+ "single_word": false,
1403
+ "special": false
1404
+ },
1405
+ "175": {
1406
+ "content": "<th>",
1407
+ "lstrip": false,
1408
+ "normalized": false,
1409
+ "rstrip": false,
1410
+ "single_word": false,
1411
+ "special": false
1412
+ },
1413
+ "176": {
1414
+ "content": "<td>",
1415
+ "lstrip": false,
1416
+ "normalized": false,
1417
+ "rstrip": false,
1418
+ "single_word": false,
1419
+ "special": false
1420
+ },
1421
+ "177": {
1422
+ "content": "</table>",
1423
+ "lstrip": false,
1424
+ "normalized": false,
1425
+ "rstrip": false,
1426
+ "single_word": false,
1427
+ "special": false
1428
+ },
1429
+ "178": {
1430
+ "content": "</caption>",
1431
+ "lstrip": false,
1432
+ "normalized": false,
1433
+ "rstrip": false,
1434
+ "single_word": false,
1435
+ "special": false
1436
+ },
1437
+ "179": {
1438
+ "content": "</thead>",
1439
+ "lstrip": false,
1440
+ "normalized": false,
1441
+ "rstrip": false,
1442
+ "single_word": false,
1443
+ "special": false
1444
+ },
1445
+ "180": {
1446
+ "content": "</tbody>",
1447
+ "lstrip": false,
1448
+ "normalized": false,
1449
+ "rstrip": false,
1450
+ "single_word": false,
1451
+ "special": false
1452
+ },
1453
+ "181": {
1454
+ "content": "</tfoot>",
1455
+ "lstrip": false,
1456
+ "normalized": false,
1457
+ "rstrip": false,
1458
+ "single_word": false,
1459
+ "special": false
1460
+ },
1461
+ "182": {
1462
+ "content": "</tr>",
1463
+ "lstrip": false,
1464
+ "normalized": false,
1465
+ "rstrip": false,
1466
+ "single_word": false,
1467
+ "special": false
1468
+ },
1469
+ "183": {
1470
+ "content": "</th>",
1471
+ "lstrip": false,
1472
+ "normalized": false,
1473
+ "rstrip": false,
1474
+ "single_word": false,
1475
+ "special": false
1476
+ },
1477
+ "184": {
1478
+ "content": "</td>",
1479
+ "lstrip": false,
1480
+ "normalized": false,
1481
+ "rstrip": false,
1482
+ "single_word": false,
1483
+ "special": false
1484
+ },
1485
+ "185": {
1486
+ "content": "<h1>",
1487
+ "lstrip": false,
1488
+ "normalized": false,
1489
+ "rstrip": false,
1490
+ "single_word": false,
1491
+ "special": false
1492
+ },
1493
+ "186": {
1494
+ "content": "<h2>",
1495
+ "lstrip": false,
1496
+ "normalized": false,
1497
+ "rstrip": false,
1498
+ "single_word": false,
1499
+ "special": false
1500
+ },
1501
+ "187": {
1502
+ "content": "<h3>",
1503
+ "lstrip": false,
1504
+ "normalized": false,
1505
+ "rstrip": false,
1506
+ "single_word": false,
1507
+ "special": false
1508
+ },
1509
+ "188": {
1510
+ "content": "<h4>",
1511
+ "lstrip": false,
1512
+ "normalized": false,
1513
+ "rstrip": false,
1514
+ "single_word": false,
1515
+ "special": false
1516
+ },
1517
+ "189": {
1518
+ "content": "<h5>",
1519
+ "lstrip": false,
1520
+ "normalized": false,
1521
+ "rstrip": false,
1522
+ "single_word": false,
1523
+ "special": false
1524
+ },
1525
+ "190": {
1526
+ "content": "<h6>",
1527
+ "lstrip": false,
1528
+ "normalized": false,
1529
+ "rstrip": false,
1530
+ "single_word": false,
1531
+ "special": false
1532
+ },
1533
+ "191": {
1534
+ "content": "<blockquote>",
1535
+ "lstrip": false,
1536
+ "normalized": false,
1537
+ "rstrip": false,
1538
+ "single_word": false,
1539
+ "special": false
1540
+ },
1541
+ "192": {
1542
+ "content": "</h1>",
1543
+ "lstrip": false,
1544
+ "normalized": false,
1545
+ "rstrip": false,
1546
+ "single_word": false,
1547
+ "special": false
1548
+ },
1549
+ "193": {
1550
+ "content": "</h2>",
1551
+ "lstrip": false,
1552
+ "normalized": false,
1553
+ "rstrip": false,
1554
+ "single_word": false,
1555
+ "special": false
1556
+ },
1557
+ "194": {
1558
+ "content": "</h3>",
1559
+ "lstrip": false,
1560
+ "normalized": false,
1561
+ "rstrip": false,
1562
+ "single_word": false,
1563
+ "special": false
1564
+ },
1565
+ "195": {
1566
+ "content": "</h4>",
1567
+ "lstrip": false,
1568
+ "normalized": false,
1569
+ "rstrip": false,
1570
+ "single_word": false,
1571
+ "special": false
1572
+ },
1573
+ "196": {
1574
+ "content": "</h5>",
1575
+ "lstrip": false,
1576
+ "normalized": false,
1577
+ "rstrip": false,
1578
+ "single_word": false,
1579
+ "special": false
1580
+ },
1581
+ "197": {
1582
+ "content": "</h6>",
1583
+ "lstrip": false,
1584
+ "normalized": false,
1585
+ "rstrip": false,
1586
+ "single_word": false,
1587
+ "special": false
1588
+ },
1589
+ "198": {
1590
+ "content": "</blockquote>",
1591
+ "lstrip": false,
1592
+ "normalized": false,
1593
+ "rstrip": false,
1594
+ "single_word": false,
1595
+ "special": false
1596
+ },
1597
+ "199": {
1598
+ "content": "<strong>",
1599
+ "lstrip": false,
1600
+ "normalized": false,
1601
+ "rstrip": false,
1602
+ "single_word": false,
1603
+ "special": false
1604
+ },
1605
+ "200": {
1606
+ "content": "<em>",
1607
+ "lstrip": false,
1608
+ "normalized": false,
1609
+ "rstrip": false,
1610
+ "single_word": false,
1611
+ "special": false
1612
+ },
1613
+ "201": {
1614
+ "content": "<b>",
1615
+ "lstrip": false,
1616
+ "normalized": false,
1617
+ "rstrip": false,
1618
+ "single_word": false,
1619
+ "special": false
1620
+ },
1621
+ "202": {
1622
+ "content": "<i>",
1623
+ "lstrip": false,
1624
+ "normalized": false,
1625
+ "rstrip": false,
1626
+ "single_word": false,
1627
+ "special": false
1628
+ },
1629
+ "203": {
1630
+ "content": "<u>",
1631
+ "lstrip": false,
1632
+ "normalized": false,
1633
+ "rstrip": false,
1634
+ "single_word": false,
1635
+ "special": false
1636
+ },
1637
+ "204": {
1638
+ "content": "<s>",
1639
+ "lstrip": false,
1640
+ "normalized": false,
1641
+ "rstrip": false,
1642
+ "single_word": false,
1643
+ "special": false
1644
+ },
1645
+ "205": {
1646
+ "content": "<sub>",
1647
+ "lstrip": false,
1648
+ "normalized": false,
1649
+ "rstrip": false,
1650
+ "single_word": false,
1651
+ "special": false
1652
+ },
1653
+ "206": {
1654
+ "content": "<sup>",
1655
+ "lstrip": false,
1656
+ "normalized": false,
1657
+ "rstrip": false,
1658
+ "single_word": false,
1659
+ "special": false
1660
+ },
1661
+ "207": {
1662
+ "content": "<code>",
1663
+ "lstrip": false,
1664
+ "normalized": false,
1665
+ "rstrip": false,
1666
+ "single_word": false,
1667
+ "special": false
1668
+ },
1669
+ "208": {
1670
+ "content": "</strong>",
1671
+ "lstrip": false,
1672
+ "normalized": false,
1673
+ "rstrip": false,
1674
+ "single_word": false,
1675
+ "special": false
1676
+ },
1677
+ "209": {
1678
+ "content": "</em>",
1679
+ "lstrip": false,
1680
+ "normalized": false,
1681
+ "rstrip": false,
1682
+ "single_word": false,
1683
+ "special": false
1684
+ },
1685
+ "210": {
1686
+ "content": "</b>",
1687
+ "lstrip": false,
1688
+ "normalized": false,
1689
+ "rstrip": false,
1690
+ "single_word": false,
1691
+ "special": false
1692
+ },
1693
+ "211": {
1694
+ "content": "</i>",
1695
+ "lstrip": false,
1696
+ "normalized": false,
1697
+ "rstrip": false,
1698
+ "single_word": false,
1699
+ "special": false
1700
+ },
1701
+ "212": {
1702
+ "content": "</u>",
1703
+ "lstrip": false,
1704
+ "normalized": false,
1705
+ "rstrip": false,
1706
+ "single_word": false,
1707
+ "special": false
1708
+ },
1709
+ "213": {
1710
+ "content": "</s>",
1711
+ "lstrip": false,
1712
+ "normalized": false,
1713
+ "rstrip": false,
1714
+ "single_word": false,
1715
+ "special": false
1716
+ },
1717
+ "214": {
1718
+ "content": "</sub>",
1719
+ "lstrip": false,
1720
+ "normalized": false,
1721
+ "rstrip": false,
1722
+ "single_word": false,
1723
+ "special": false
1724
+ },
1725
+ "215": {
1726
+ "content": "</sup>",
1727
+ "lstrip": false,
1728
+ "normalized": false,
1729
+ "rstrip": false,
1730
+ "single_word": false,
1731
+ "special": false
1732
+ },
1733
+ "216": {
1734
+ "content": "</code>",
1735
+ "lstrip": false,
1736
+ "normalized": false,
1737
+ "rstrip": false,
1738
+ "single_word": false,
1739
+ "special": false
1740
+ }
1741
+ },
1742
+ "additional_special_tokens": [
1743
+ "<start_of_turn>",
1744
+ "<end_of_turn>"
1745
+ ],
1746
+ "bos_token": "<bos>",
1747
+ "clean_up_tokenization_spaces": false,
1748
+ "do_lower_case": true,
1749
+ "eos_token": "<eos>",
1750
+ "extra_special_tokens": {},
1751
+ "model_input_names": [
1752
+ "input_ids"
1753
+ ],
1754
+ "model_max_length": 1000000000000000019884624838656,
1755
+ "pad_token": "<pad>",
1756
+ "padding_side": "right",
1757
+ "processor_class": "Fgclip2Processor",
1758
+ "sp_model_kwargs": {},
1759
+ "spaces_between_special_tokens": false,
1760
+ "tokenizer_class": "GemmaTokenizer",
1761
+ "unk_token": "<unk>",
1762
+ "use_default_system_prompt": false
1763
+ }