qfrodicio commited on
Commit
731d7ff
1 Parent(s): 2032b17

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +68 -0
README.md ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - precision
7
+ - recall
8
+ - f1
9
+ - accuracy
10
+ model-index:
11
+ - name: roberta-finetuned-gesture-prediction-9-classes
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # roberta-finetuned-gesture-prediction-9-classes
19
+
20
+ This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 0.5988
23
+ - Precision: 0.6628
24
+ - Recall: 0.7547
25
+ - F1: 0.7058
26
+ - Accuracy: 0.8457
27
+
28
+ ## Model description
29
+
30
+ More information needed
31
+
32
+ ## Intended uses & limitations
33
+
34
+ More information needed
35
+
36
+ ## Training and evaluation data
37
+
38
+ More information needed
39
+
40
+ ## Training procedure
41
+
42
+ ### Training hyperparameters
43
+
44
+ The following hyperparameters were used during training:
45
+ - learning_rate: 7.044494533766864e-05
46
+ - train_batch_size: 16
47
+ - eval_batch_size: 16
48
+ - seed: 42
49
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
+ - lr_scheduler_type: linear
51
+ - num_epochs: 4
52
+
53
+ ### Training results
54
+
55
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
56
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
57
+ | 1.28 | 1.0 | 87 | 0.8146 | 0.5247 | 0.6511 | 0.5811 | 0.7895 |
58
+ | 0.6127 | 2.0 | 174 | 0.6237 | 0.6171 | 0.7153 | 0.6626 | 0.8267 |
59
+ | 0.3742 | 3.0 | 261 | 0.5970 | 0.6620 | 0.7577 | 0.7066 | 0.8485 |
60
+ | 0.216 | 4.0 | 348 | 0.5988 | 0.6628 | 0.7547 | 0.7058 | 0.8457 |
61
+
62
+
63
+ ### Framework versions
64
+
65
+ - Transformers 4.26.1
66
+ - Pytorch 1.13.1+cu116
67
+ - Datasets 2.10.1
68
+ - Tokenizers 0.13.2