qfrodicio commited on
Commit
5f53fec
·
1 Parent(s): 29ed28d

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +20 -13
README.md CHANGED
@@ -3,10 +3,10 @@ license: apache-2.0
3
  tags:
4
  - generated_from_trainer
5
  metrics:
 
6
  - precision
7
  - recall
8
  - f1
9
- - accuracy
10
  model-index:
11
  - name: bert-finetuned-gesture-prediction-21-classes
12
  results: []
@@ -19,11 +19,11 @@ should probably proofread and complete it, then remove this comment. -->
19
 
20
  This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the None dataset.
21
  It achieves the following results on the evaluation set:
22
- - Loss: 0.7728
23
- - Precision: 0.5873
24
- - Recall: 0.7150
25
- - F1: 0.6449
26
- - Accuracy: 0.7956
27
 
28
  ## Model description
29
 
@@ -42,21 +42,28 @@ More information needed
42
  ### Training hyperparameters
43
 
44
  The following hyperparameters were used during training:
45
- - learning_rate: 9.076335861120684e-05
46
  - train_batch_size: 16
47
  - eval_batch_size: 16
48
  - seed: 42
49
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
  - lr_scheduler_type: linear
51
- - num_epochs: 3
52
 
53
  ### Training results
54
 
55
- | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
56
- |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
57
- | 1.643 | 1.0 | 104 | 0.9867 | 0.4314 | 0.6039 | 0.5033 | 0.7449 |
58
- | 0.7256 | 2.0 | 208 | 0.7743 | 0.5393 | 0.6715 | 0.5982 | 0.7842 |
59
- | 0.3614 | 3.0 | 312 | 0.7728 | 0.5873 | 0.7150 | 0.6449 | 0.7956 |
 
 
 
 
 
 
 
60
 
61
 
62
  ### Framework versions
 
3
  tags:
4
  - generated_from_trainer
5
  metrics:
6
+ - accuracy
7
  - precision
8
  - recall
9
  - f1
 
10
  model-index:
11
  - name: bert-finetuned-gesture-prediction-21-classes
12
  results: []
 
19
 
20
  This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the None dataset.
21
  It achieves the following results on the evaluation set:
22
+ - Loss: 0.9818
23
+ - Accuracy: 0.8232
24
+ - Precision: 0.8213
25
+ - Recall: 0.8232
26
+ - F1: 0.8181
27
 
28
  ## Model description
29
 
 
42
  ### Training hyperparameters
43
 
44
  The following hyperparameters were used during training:
45
+ - learning_rate: 2e-05
46
  - train_batch_size: 16
47
  - eval_batch_size: 16
48
  - seed: 42
49
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
  - lr_scheduler_type: linear
51
+ - num_epochs: 10
52
 
53
  ### Training results
54
 
55
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
56
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
57
+ | 2.1826 | 1.0 | 104 | 1.2892 | 0.7193 | 0.6656 | 0.7193 | 0.6745 |
58
+ | 1.0758 | 2.0 | 208 | 0.9593 | 0.7816 | 0.7519 | 0.7816 | 0.7621 |
59
+ | 0.6947 | 3.0 | 312 | 0.9170 | 0.7885 | 0.7730 | 0.7885 | 0.7760 |
60
+ | 0.4928 | 4.0 | 416 | 0.8967 | 0.8014 | 0.7931 | 0.8014 | 0.7913 |
61
+ | 0.3413 | 5.0 | 520 | 0.9195 | 0.8034 | 0.8076 | 0.8034 | 0.7966 |
62
+ | 0.2473 | 6.0 | 624 | 0.9123 | 0.8131 | 0.8134 | 0.8131 | 0.8078 |
63
+ | 0.1799 | 7.0 | 728 | 0.9474 | 0.8191 | 0.8195 | 0.8191 | 0.8139 |
64
+ | 0.1329 | 8.0 | 832 | 0.9611 | 0.8237 | 0.8222 | 0.8237 | 0.8182 |
65
+ | 0.116 | 9.0 | 936 | 0.9849 | 0.8204 | 0.8190 | 0.8204 | 0.8148 |
66
+ | 0.0972 | 10.0 | 1040 | 0.9818 | 0.8232 | 0.8213 | 0.8232 | 0.8181 |
67
 
68
 
69
  ### Framework versions