|
|
import torch
|
|
|
import torch.nn as nn
|
|
|
import random
|
|
|
|
|
|
from typing import Literal, Tuple, TypedDict, Union, Dict, Any, Optional, List
|
|
|
from PIL import Image
|
|
|
from dataclasses import dataclass
|
|
|
from tokenizers import Tokenizer
|
|
|
|
|
|
from .config import MoondreamConfig
|
|
|
from .image_crops import reconstruct_from_crops
|
|
|
from .vision import vision_encoder, vision_projection, prepare_crops, build_vision_model
|
|
|
from .text import build_text_model, text_encoder, lm_head, text_decoder
|
|
|
from .region import (
|
|
|
decode_coordinate,
|
|
|
encode_coordinate,
|
|
|
decode_size,
|
|
|
encode_size,
|
|
|
encode_spatial_refs,
|
|
|
SpatialRefs,
|
|
|
)
|
|
|
from .layers import QuantizedLinear
|
|
|
from .lora import variant_state_dict
|
|
|
from .utils import remove_outlier_points
|
|
|
|
|
|
ImageEncodingSettings = TypedDict(
|
|
|
"ImageEncodingSettings",
|
|
|
{"variant": str},
|
|
|
total=False,
|
|
|
)
|
|
|
|
|
|
TextSamplingSettings = TypedDict(
|
|
|
"TextSamplingSettings",
|
|
|
{
|
|
|
"max_tokens": int,
|
|
|
"temperature": float,
|
|
|
"top_p": float,
|
|
|
"variant": str,
|
|
|
},
|
|
|
total=False,
|
|
|
)
|
|
|
|
|
|
ObjectSamplingSettings = TypedDict(
|
|
|
"ObjectSamplingSettings",
|
|
|
{"max_objects": int, "variant": str},
|
|
|
total=False,
|
|
|
)
|
|
|
|
|
|
|
|
|
DEFAULT_MAX_TOKENS = 768
|
|
|
DEFAULT_TEMPERATURE = 0.5
|
|
|
DEFAULT_TOP_P = 0.3
|
|
|
DEFAULT_MAX_OBJECTS = 50
|
|
|
|
|
|
|
|
|
@dataclass(frozen=True)
|
|
|
class EncodedImage:
|
|
|
pos: int
|
|
|
caches: List[Tuple[torch.Tensor, torch.Tensor]]
|
|
|
|
|
|
|
|
|
class KVCache(nn.Module):
|
|
|
|
|
|
def __init__(self, n_heads, n_kv_heads, max_context, dim, device, dtype):
|
|
|
super().__init__()
|
|
|
cache_shape = (1, n_kv_heads, max_context, dim // n_heads)
|
|
|
self.register_buffer(
|
|
|
"k_cache", torch.zeros(*cache_shape, device=device, dtype=dtype)
|
|
|
)
|
|
|
self.register_buffer(
|
|
|
"v_cache", torch.zeros(*cache_shape, device=device, dtype=dtype)
|
|
|
)
|
|
|
|
|
|
def update(self, pos_ids, k, v):
|
|
|
kout, vout = self.k_cache, self.v_cache
|
|
|
kout[:, :, pos_ids, :] = k
|
|
|
vout[:, :, pos_ids, :] = v
|
|
|
return kout, vout
|
|
|
|
|
|
|
|
|
class MoondreamModel(nn.Module):
|
|
|
|
|
|
def __init__(
|
|
|
self, config: MoondreamConfig, dtype=torch.bfloat16, setup_caches=True
|
|
|
):
|
|
|
super().__init__()
|
|
|
self.config = config
|
|
|
|
|
|
self.tokenizer = Tokenizer.from_pretrained("moondream/starmie-v1")
|
|
|
self.vision = build_vision_model(config.vision, dtype)
|
|
|
self.text = build_text_model(config.text, dtype)
|
|
|
|
|
|
|
|
|
linear_cls = (
|
|
|
QuantizedLinear if config.region.group_size is not None else nn.Linear
|
|
|
)
|
|
|
self.region = nn.ModuleDict(
|
|
|
{
|
|
|
"coord_encoder": linear_cls(
|
|
|
config.region.coord_feat_dim, config.region.dim, dtype=dtype
|
|
|
),
|
|
|
"coord_decoder": nn.ModuleDict(
|
|
|
{
|
|
|
"fc1": linear_cls(
|
|
|
config.region.dim, config.region.inner_dim, dtype=dtype
|
|
|
),
|
|
|
"fc2": linear_cls(
|
|
|
config.region.inner_dim,
|
|
|
config.region.coord_out_dim,
|
|
|
dtype=dtype,
|
|
|
),
|
|
|
}
|
|
|
),
|
|
|
"size_encoder": linear_cls(
|
|
|
config.region.size_feat_dim, config.region.dim, dtype=dtype
|
|
|
),
|
|
|
"size_decoder": nn.ModuleDict(
|
|
|
{
|
|
|
"fc1": linear_cls(
|
|
|
config.region.dim, config.region.inner_dim, dtype=dtype
|
|
|
),
|
|
|
"fc2": linear_cls(
|
|
|
config.region.inner_dim,
|
|
|
config.region.size_out_dim,
|
|
|
dtype=dtype,
|
|
|
),
|
|
|
}
|
|
|
),
|
|
|
}
|
|
|
)
|
|
|
self.region.coord_features = nn.Parameter(
|
|
|
torch.empty(config.region.coord_feat_dim // 2, 1, dtype=dtype).T
|
|
|
)
|
|
|
self.region.size_features = nn.Parameter(
|
|
|
torch.empty(config.region.size_feat_dim // 2, 2, dtype=dtype).T
|
|
|
)
|
|
|
|
|
|
attn_mask = torch.tril(
|
|
|
torch.ones(
|
|
|
1, 1, config.text.max_context, config.text.max_context, dtype=torch.bool
|
|
|
)
|
|
|
)
|
|
|
patch_w = config.vision.crop_size // config.vision.enc_patch_size
|
|
|
prefix_attn_len = 1 + patch_w**2
|
|
|
attn_mask[..., :prefix_attn_len, :prefix_attn_len] = 1
|
|
|
self.register_buffer("attn_mask", attn_mask, persistent=False)
|
|
|
|
|
|
|
|
|
if setup_caches:
|
|
|
self._setup_caches()
|
|
|
|
|
|
def _setup_caches(self):
|
|
|
c = self.config.text
|
|
|
for b in self.text.blocks:
|
|
|
b.kv_cache = KVCache(
|
|
|
c.n_heads,
|
|
|
c.n_kv_heads,
|
|
|
c.max_context,
|
|
|
c.dim,
|
|
|
device=self.device,
|
|
|
dtype=self.vision.pos_emb.dtype,
|
|
|
)
|
|
|
|
|
|
@property
|
|
|
def device(self):
|
|
|
return self.vision.pos_emb.device
|
|
|
|
|
|
def _vis_enc(self, x: torch.Tensor):
|
|
|
return vision_encoder(x, self.vision, self.config.vision)
|
|
|
|
|
|
def _vis_proj(self, g: torch.Tensor, r: torch.Tensor):
|
|
|
return vision_projection(g, r, self.vision, self.config.vision)
|
|
|
|
|
|
def _prefill(
|
|
|
self,
|
|
|
x: torch.Tensor,
|
|
|
attn_mask: torch.Tensor,
|
|
|
pos_ids: torch.Tensor,
|
|
|
lora: Optional[torch.Tensor],
|
|
|
):
|
|
|
return text_decoder(x, self.text, attn_mask, pos_ids, self.config.text, lora)
|
|
|
|
|
|
def _decode_one_tok(
|
|
|
self,
|
|
|
x: torch.Tensor,
|
|
|
attn_mask: torch.Tensor,
|
|
|
pos_ids: torch.Tensor,
|
|
|
lora: Optional[torch.Tensor],
|
|
|
):
|
|
|
hidden = text_decoder(x, self.text, attn_mask, pos_ids, self.config.text, lora)
|
|
|
logits = lm_head(hidden, self.text)
|
|
|
return logits, hidden
|
|
|
|
|
|
def compile(self):
|
|
|
for module in self.modules():
|
|
|
if isinstance(module, QuantizedLinear):
|
|
|
module.unpack()
|
|
|
|
|
|
|
|
|
self._vis_enc = torch.compile(self._vis_enc, fullgraph=True)
|
|
|
self._prefill = torch.compile(self._prefill, fullgraph=True)
|
|
|
self._decode_one_tok = torch.compile(
|
|
|
self._decode_one_tok, fullgraph=True, mode="reduce-overhead"
|
|
|
)
|
|
|
|
|
|
def _run_vision_encoder(self, image: Image.Image) -> torch.Tensor:
|
|
|
all_crops, tiling = prepare_crops(image, self.config.vision, device=self.device)
|
|
|
|
|
|
torch._dynamo.mark_dynamic(all_crops, 0)
|
|
|
|
|
|
outputs = self._vis_enc(all_crops)
|
|
|
|
|
|
global_features = outputs[0]
|
|
|
local_features = outputs[1:].view(
|
|
|
-1,
|
|
|
self.config.vision.enc_n_layers,
|
|
|
self.config.vision.enc_n_layers,
|
|
|
self.config.vision.enc_dim,
|
|
|
)
|
|
|
|
|
|
reconstructed = reconstruct_from_crops(
|
|
|
local_features,
|
|
|
tiling,
|
|
|
patch_size=1,
|
|
|
overlap_margin=self.config.vision.overlap_margin,
|
|
|
)
|
|
|
|
|
|
return self._vis_proj(global_features, reconstructed)
|
|
|
|
|
|
def encode_image(
|
|
|
self,
|
|
|
image: Union[Image.Image, EncodedImage],
|
|
|
settings: Optional[ImageEncodingSettings] = None,
|
|
|
) -> EncodedImage:
|
|
|
if isinstance(image, EncodedImage):
|
|
|
return image
|
|
|
elif not isinstance(image, Image.Image):
|
|
|
raise ValueError("image must be a PIL Image or EncodedImage")
|
|
|
|
|
|
lora = (
|
|
|
variant_state_dict(settings["variant"], device=self.device)
|
|
|
if settings is not None and settings["variant"] is not None
|
|
|
else None
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
with torch.inference_mode():
|
|
|
img_emb = self._run_vision_encoder(image)
|
|
|
bos_emb = text_encoder(
|
|
|
torch.tensor([[self.config.tokenizer.bos_id]], device=self.device),
|
|
|
self.text,
|
|
|
)
|
|
|
inputs_embeds = torch.cat([bos_emb, img_emb[None]], dim=1)
|
|
|
mask = self.attn_mask[:, :, 0 : inputs_embeds.size(1), :]
|
|
|
pos_ids = torch.arange(inputs_embeds.size(1), dtype=torch.long)
|
|
|
self._prefill(inputs_embeds, mask, pos_ids, lora)
|
|
|
|
|
|
return EncodedImage(
|
|
|
pos=inputs_embeds.size(1),
|
|
|
caches=[
|
|
|
(
|
|
|
b.kv_cache.k_cache[:, :, : inputs_embeds.size(1), :].clone(),
|
|
|
b.kv_cache.v_cache[:, :, : inputs_embeds.size(1), :].clone(),
|
|
|
)
|
|
|
for b in self.text.blocks
|
|
|
],
|
|
|
)
|
|
|
|
|
|
def _apply_top_p(self, probs: torch.Tensor, top_p: float):
|
|
|
probs_sort, probs_idx = torch.sort(probs, dim=-1, descending=True)
|
|
|
probs_sum = torch.cumsum(probs_sort, dim=-1)
|
|
|
mask = probs_sum - probs_sort > top_p
|
|
|
probs_sort[mask] = 0.0
|
|
|
probs_sort.div_(probs_sort.sum(dim=-1, keepdim=True))
|
|
|
next_probs = torch.zeros_like(probs)
|
|
|
next_probs.scatter_(dim=-1, index=probs_idx, src=probs_sort)
|
|
|
return next_probs
|
|
|
|
|
|
def _prefill_prompt(
|
|
|
self,
|
|
|
prompt_tokens: torch.Tensor,
|
|
|
pos: int,
|
|
|
temperature: float,
|
|
|
top_p: float,
|
|
|
spatial_refs: Optional[SpatialRefs] = None,
|
|
|
attn_mask: Optional[torch.Tensor] = None,
|
|
|
lora: Optional[dict] = None,
|
|
|
):
|
|
|
with torch.inference_mode():
|
|
|
prompt_emb = text_encoder(prompt_tokens, self.text)
|
|
|
|
|
|
if spatial_refs:
|
|
|
encoded_refs = encode_spatial_refs(spatial_refs, self.region)
|
|
|
prompt_emb[prompt_tokens == self.config.tokenizer.coord_id] = (
|
|
|
encoded_refs["coords"]
|
|
|
)
|
|
|
if encoded_refs["sizes"] is not None:
|
|
|
prompt_emb[prompt_tokens == self.config.tokenizer.size_id] = (
|
|
|
encoded_refs["sizes"]
|
|
|
)
|
|
|
|
|
|
torch._dynamo.mark_dynamic(prompt_emb, 1)
|
|
|
|
|
|
if attn_mask is None:
|
|
|
attn_mask = self.attn_mask
|
|
|
|
|
|
mask = attn_mask[:, :, pos : pos + prompt_emb.size(1), :]
|
|
|
pos_ids = torch.arange(pos, pos + prompt_emb.size(1), dtype=torch.long)
|
|
|
hidden_BC = self._prefill(prompt_emb, mask, pos_ids, lora)
|
|
|
logits_BV = lm_head(hidden_BC, self.text)
|
|
|
|
|
|
if temperature == 0:
|
|
|
next_token = torch.argmax(logits_BV, dim=-1).unsqueeze(1)
|
|
|
else:
|
|
|
probs = torch.softmax(logits_BV / temperature, dim=-1)
|
|
|
probs = self._apply_top_p(probs, top_p)
|
|
|
next_token = torch.multinomial(probs, num_samples=1)
|
|
|
|
|
|
pos = pos + prompt_emb.size(1)
|
|
|
return logits_BV, hidden_BC, next_token, pos
|
|
|
|
|
|
def _generate_reasoning(
|
|
|
self,
|
|
|
prompt_tokens,
|
|
|
pos,
|
|
|
settings: Optional[TextSamplingSettings] = None,
|
|
|
spatial_refs: Optional[SpatialRefs] = None,
|
|
|
attn_mask: Optional[torch.Tensor] = None,
|
|
|
) -> Tuple[int, str, List[dict]]:
|
|
|
max_tokens = (
|
|
|
settings.get("max_tokens", DEFAULT_MAX_TOKENS)
|
|
|
if settings
|
|
|
else DEFAULT_MAX_TOKENS
|
|
|
)
|
|
|
temperature = (
|
|
|
settings.get("temperature", DEFAULT_TEMPERATURE)
|
|
|
if settings
|
|
|
else DEFAULT_TEMPERATURE
|
|
|
)
|
|
|
lora = (
|
|
|
variant_state_dict(settings["variant"], device=self.device)
|
|
|
if settings is not None and "variant" in settings
|
|
|
else None
|
|
|
)
|
|
|
|
|
|
top_p = settings.get("top_p", DEFAULT_TOP_P) if settings else DEFAULT_TOP_P
|
|
|
eos_id = self.config.tokenizer.answer_id
|
|
|
|
|
|
_, last_hidden_BC, next_token, pos = self._prefill_prompt(
|
|
|
prompt_tokens,
|
|
|
pos,
|
|
|
temperature,
|
|
|
top_p,
|
|
|
spatial_refs,
|
|
|
attn_mask=attn_mask,
|
|
|
lora=lora,
|
|
|
)
|
|
|
|
|
|
text_token_chunks = [[]]
|
|
|
grounding_chunks = [[]]
|
|
|
|
|
|
mask = torch.zeros(1, 1, 2048, device=self.device, dtype=torch.bool)
|
|
|
mask[:, :, :pos] = 1
|
|
|
pos_ids = torch.tensor([pos], device=self.device, dtype=torch.long)
|
|
|
generated_tokens = 0
|
|
|
|
|
|
while (
|
|
|
next_token_id := next_token.item()
|
|
|
) != eos_id and generated_tokens < max_tokens:
|
|
|
if (
|
|
|
next_token_id == self.config.tokenizer.start_ground_points_id
|
|
|
or next_token_id == self.config.tokenizer.end_ground_id
|
|
|
):
|
|
|
text_token_chunks.append([])
|
|
|
grounding_chunks.append([])
|
|
|
|
|
|
text_token_chunks[-1].append(next_token_id)
|
|
|
|
|
|
with torch.inference_mode():
|
|
|
if next_token_id == self.config.tokenizer.coord_id:
|
|
|
coord_logits = decode_coordinate(last_hidden_BC, self.region)
|
|
|
coord = torch.argmax(coord_logits, dim=-1) / coord_logits.size(-1)
|
|
|
grounding_chunks[-1].append(coord.item())
|
|
|
|
|
|
next_emb = encode_coordinate(
|
|
|
coord.to(dtype=coord_logits.dtype), self.region
|
|
|
).unsqueeze(0)
|
|
|
else:
|
|
|
next_emb = text_encoder(next_token, self.text)
|
|
|
|
|
|
mask[:, :, pos], pos_ids[0] = 1, pos
|
|
|
|
|
|
logits_BV, last_hidden_BC = self._decode_one_tok(
|
|
|
next_emb, mask, pos_ids, lora
|
|
|
)
|
|
|
logits_BV[:, self.config.tokenizer.eos_id] = float("-inf")
|
|
|
logits_BV[:, self.config.tokenizer.size_id] = float("-inf")
|
|
|
|
|
|
pos += 1
|
|
|
|
|
|
if temperature == 0:
|
|
|
next_token = torch.argmax(logits_BV, dim=-1).unsqueeze(1)
|
|
|
else:
|
|
|
probs = torch.softmax(logits_BV / temperature, dim=-1)
|
|
|
probs = self._apply_top_p(probs, top_p)
|
|
|
next_token = torch.multinomial(probs, num_samples=1)
|
|
|
|
|
|
generated_tokens += 1
|
|
|
|
|
|
text_chunks = [
|
|
|
self.tokenizer.decode(chunk_tokens) for chunk_tokens in text_token_chunks
|
|
|
]
|
|
|
text = "".join(text_chunks)
|
|
|
|
|
|
start_idx = 0
|
|
|
grounding = []
|
|
|
for text_chunk, grounding_chunk in zip(text_chunks, grounding_chunks):
|
|
|
if len(grounding_chunk) > 1:
|
|
|
points = []
|
|
|
for i in range(0, len(grounding_chunk) - (len(grounding_chunk) % 2), 2):
|
|
|
points.append((grounding_chunk[i], grounding_chunk[i + 1]))
|
|
|
grounding.append(
|
|
|
{
|
|
|
"start_idx": start_idx,
|
|
|
"end_idx": start_idx + len(text_chunk),
|
|
|
"points": points,
|
|
|
}
|
|
|
)
|
|
|
start_idx += len(text_chunk)
|
|
|
|
|
|
return pos, text, grounding
|
|
|
|
|
|
def _generate_answer(
|
|
|
self,
|
|
|
prompt_tokens: torch.Tensor,
|
|
|
pos: int,
|
|
|
settings: Optional[TextSamplingSettings] = None,
|
|
|
spatial_refs: Optional[SpatialRefs] = None,
|
|
|
eos_id: Optional[int] = None,
|
|
|
attn_mask: Optional[torch.Tensor] = None,
|
|
|
):
|
|
|
max_tokens = (
|
|
|
settings.get("max_tokens", DEFAULT_MAX_TOKENS)
|
|
|
if settings
|
|
|
else DEFAULT_MAX_TOKENS
|
|
|
)
|
|
|
temperature = (
|
|
|
settings.get("temperature", DEFAULT_TEMPERATURE)
|
|
|
if settings
|
|
|
else DEFAULT_TEMPERATURE
|
|
|
)
|
|
|
top_p = settings.get("top_p", DEFAULT_TOP_P) if settings else DEFAULT_TOP_P
|
|
|
eos_id = eos_id if eos_id is not None else self.config.tokenizer.eos_id
|
|
|
lora = (
|
|
|
variant_state_dict(settings["variant"], device=self.device)
|
|
|
if settings is not None and "variant" in settings
|
|
|
else None
|
|
|
)
|
|
|
|
|
|
_, _, next_token, pos = self._prefill_prompt(
|
|
|
prompt_tokens,
|
|
|
pos,
|
|
|
temperature,
|
|
|
top_p,
|
|
|
spatial_refs,
|
|
|
attn_mask=attn_mask,
|
|
|
lora=lora,
|
|
|
)
|
|
|
|
|
|
def generator(next_token, pos):
|
|
|
mask = torch.zeros(1, 1, 2048, device=self.device, dtype=torch.bool)
|
|
|
mask[:, :, :pos] = 1
|
|
|
pos_ids = torch.tensor([pos], device=self.device, dtype=torch.long)
|
|
|
generated_tokens = 0
|
|
|
|
|
|
|
|
|
token_cache = []
|
|
|
print_len = 0
|
|
|
|
|
|
while (
|
|
|
next_token_id := next_token.item()
|
|
|
) != eos_id and generated_tokens < max_tokens:
|
|
|
|
|
|
token_cache.append(next_token_id)
|
|
|
|
|
|
|
|
|
text = self.tokenizer.decode(token_cache)
|
|
|
|
|
|
|
|
|
if text.endswith("\n"):
|
|
|
printable_text = text[print_len:]
|
|
|
token_cache = []
|
|
|
print_len = 0
|
|
|
if printable_text:
|
|
|
yield printable_text
|
|
|
|
|
|
elif len(text) > 0 and _is_cjk_char(ord(text[-1])):
|
|
|
printable_text = text[print_len:]
|
|
|
print_len += len(printable_text)
|
|
|
if printable_text:
|
|
|
yield printable_text
|
|
|
|
|
|
else:
|
|
|
last_space_idx = text.rfind(" ", print_len)
|
|
|
if last_space_idx >= print_len:
|
|
|
printable_text = text[print_len : last_space_idx + 1]
|
|
|
print_len += len(printable_text)
|
|
|
if printable_text:
|
|
|
yield printable_text
|
|
|
|
|
|
with torch.inference_mode():
|
|
|
next_emb = text_encoder(next_token, self.text)
|
|
|
mask[:, :, pos], pos_ids[0] = 1, pos
|
|
|
|
|
|
logits_BV, _ = self._decode_one_tok(next_emb, mask, pos_ids, lora)
|
|
|
logits_BV[:, self.config.tokenizer.answer_id] = float("-inf")
|
|
|
|
|
|
pos += 1
|
|
|
|
|
|
if temperature == 0:
|
|
|
next_token = torch.argmax(logits_BV, dim=-1).unsqueeze(
|
|
|
1
|
|
|
)
|
|
|
else:
|
|
|
probs = torch.softmax(logits_BV / temperature, dim=-1)
|
|
|
probs = self._apply_top_p(probs, top_p)
|
|
|
next_token = torch.multinomial(probs, num_samples=1)
|
|
|
|
|
|
generated_tokens += 1
|
|
|
|
|
|
|
|
|
if token_cache:
|
|
|
text = self.tokenizer.decode(token_cache)
|
|
|
printable_text = text[print_len:]
|
|
|
if printable_text:
|
|
|
yield printable_text
|
|
|
|
|
|
return generator(next_token, pos)
|
|
|
|
|
|
def query(
|
|
|
self,
|
|
|
image: Optional[Union[Image.Image, EncodedImage]] = None,
|
|
|
question: str = None,
|
|
|
reasoning: bool = False,
|
|
|
spatial_refs: Optional[SpatialRefs] = None,
|
|
|
stream: bool = False,
|
|
|
settings: Optional[TextSamplingSettings] = None,
|
|
|
):
|
|
|
if self.config.tokenizer.templates["query"] is None:
|
|
|
raise NotImplementedError("Model does not support querying.")
|
|
|
|
|
|
if question is None:
|
|
|
raise ValueError("question must be provided.")
|
|
|
|
|
|
if spatial_refs and image is None:
|
|
|
raise ValueError("spatial_refs can only be used with an image.")
|
|
|
|
|
|
attn_mask = self.attn_mask
|
|
|
if image is not None:
|
|
|
image = self.encode_image(image, settings)
|
|
|
self.load_encoded_image(image)
|
|
|
pos = image.pos
|
|
|
prompt_toks = self.config.tokenizer.templates["query"]["prefix"]
|
|
|
else:
|
|
|
self._setup_caches()
|
|
|
pos = 0
|
|
|
prompt_toks = [
|
|
|
self.config.tokenizer.bos_id
|
|
|
] + self.config.tokenizer.templates["query"]["prefix"]
|
|
|
max_context = self.config.text.max_context
|
|
|
attn_mask = torch.tril(
|
|
|
torch.ones(1, 1, max_context, max_context, dtype=torch.bool)
|
|
|
).to(self.device)
|
|
|
|
|
|
spatial_toks = []
|
|
|
if spatial_refs:
|
|
|
for ref in spatial_refs:
|
|
|
coord_id = self.config.tokenizer.coord_id
|
|
|
size_id = self.config.tokenizer.size_id
|
|
|
if len(ref) == 2:
|
|
|
spatial_toks.extend([coord_id, coord_id])
|
|
|
else:
|
|
|
spatial_toks.extend([coord_id, coord_id, size_id])
|
|
|
|
|
|
prompt_tokens = [
|
|
|
prompt_toks
|
|
|
+ spatial_toks
|
|
|
+ self.tokenizer.encode(question).ids
|
|
|
+ self.config.tokenizer.templates["query"]["suffix"]
|
|
|
]
|
|
|
|
|
|
if reasoning:
|
|
|
prompt_tokens[0] += [self.config.tokenizer.thinking_id]
|
|
|
prompt_tokens = torch.tensor(prompt_tokens, device=self.device)
|
|
|
pos, reasoning_text, reasoning_grounding = self._generate_reasoning(
|
|
|
prompt_tokens, pos, settings, spatial_refs, attn_mask=attn_mask
|
|
|
)
|
|
|
prompt_tokens = [self.config.tokenizer.templates["query"]["suffix"]]
|
|
|
reasoning_dict = {
|
|
|
"reasoning": {"text": reasoning_text, "grounding": reasoning_grounding}
|
|
|
}
|
|
|
else:
|
|
|
prompt_tokens[0] += self.config.tokenizer.templates["query"]["suffix"]
|
|
|
reasoning_dict = {}
|
|
|
|
|
|
prompt_tokens = torch.tensor(prompt_tokens, device=self.device)
|
|
|
|
|
|
def generator():
|
|
|
for token in self._generate_answer(
|
|
|
prompt_tokens, pos, settings, spatial_refs, attn_mask=attn_mask
|
|
|
):
|
|
|
yield token
|
|
|
|
|
|
if stream:
|
|
|
return {**reasoning_dict, "answer": generator()}
|
|
|
else:
|
|
|
return {**reasoning_dict, "answer": "".join(list(generator()))}
|
|
|
|
|
|
def load_encoded_image(self, encoded_image: EncodedImage):
|
|
|
for b, (k, v) in zip(self.text.blocks, encoded_image.caches):
|
|
|
b.kv_cache.k_cache[:, :, : k.size(2), :] = k
|
|
|
b.kv_cache.v_cache[:, :, : v.size(2), :] = v
|
|
|
|
|
|
def caption(
|
|
|
self,
|
|
|
image: Union[Image.Image, EncodedImage],
|
|
|
length: Literal["normal", "short", "long"] = "normal",
|
|
|
stream: bool = False,
|
|
|
settings: Optional[TextSamplingSettings] = None,
|
|
|
):
|
|
|
if self.config.tokenizer.templates["caption"] is None:
|
|
|
raise NotImplementedError("Model does not support captioning.")
|
|
|
if length not in self.config.tokenizer.templates["caption"]:
|
|
|
raise ValueError(f"Model does not support caption length '{length}'.")
|
|
|
|
|
|
image = self.encode_image(image, settings)
|
|
|
self.load_encoded_image(image)
|
|
|
|
|
|
prompt_tokens = torch.tensor(
|
|
|
[self.config.tokenizer.templates["caption"][length]], device=self.device
|
|
|
)
|
|
|
|
|
|
def generator():
|
|
|
for token in self._generate_answer(prompt_tokens, image.pos, settings):
|
|
|
yield token
|
|
|
|
|
|
if stream:
|
|
|
return {"caption": generator()}
|
|
|
else:
|
|
|
return {"caption": "".join(list(generator()))}
|
|
|
|
|
|
def _generate_points(
|
|
|
self,
|
|
|
hidden: torch.Tensor,
|
|
|
next_token: torch.Tensor,
|
|
|
pos: int,
|
|
|
include_size: bool = True,
|
|
|
max_objects: int = DEFAULT_MAX_OBJECTS,
|
|
|
lora: Optional[dict] = None,
|
|
|
):
|
|
|
out = []
|
|
|
mask = torch.zeros(1, 1, 2048, device=self.device, dtype=torch.bool)
|
|
|
mask[:, :, :pos] = 1
|
|
|
pos_ids = torch.tensor([pos], device=self.device, dtype=torch.long)
|
|
|
|
|
|
with torch.inference_mode():
|
|
|
while (
|
|
|
next_token.item() != self.config.tokenizer.eos_id
|
|
|
and len(out) < max_objects
|
|
|
):
|
|
|
x_logits = decode_coordinate(hidden, self.region)
|
|
|
x_center = torch.argmax(x_logits, dim=-1) / x_logits.size(-1)
|
|
|
next_emb = encode_coordinate(
|
|
|
x_center.to(dtype=x_logits.dtype), self.region
|
|
|
).unsqueeze(0)
|
|
|
|
|
|
|
|
|
mask[:, :, pos], pos_ids[0] = 1, pos
|
|
|
_, hidden = self._decode_one_tok(next_emb, mask, pos_ids, lora)
|
|
|
pos += 1
|
|
|
y_logits = decode_coordinate(hidden, self.region)
|
|
|
y_center = torch.argmax(y_logits, dim=-1) / y_logits.size(-1)
|
|
|
next_emb = encode_coordinate(
|
|
|
y_center.to(dtype=y_logits.dtype), self.region
|
|
|
).unsqueeze(0)
|
|
|
|
|
|
|
|
|
if include_size:
|
|
|
mask[:, :, pos], pos_ids[0] = 1, pos
|
|
|
logits, hidden = self._decode_one_tok(next_emb, mask, pos_ids, lora)
|
|
|
pos += 1
|
|
|
size_logits = decode_size(hidden, self.region)
|
|
|
|
|
|
|
|
|
w_bin = torch.argmax(size_logits[0], dim=-1)
|
|
|
h_bin = torch.argmax(size_logits[1], dim=-1)
|
|
|
|
|
|
|
|
|
|
|
|
w = torch.pow(2.0, (w_bin.float() / 1023.0) * 10.0 - 10.0)
|
|
|
h = torch.pow(2.0, (h_bin.float() / 1023.0) * 10.0 - 10.0)
|
|
|
|
|
|
next_emb = (
|
|
|
encode_size(
|
|
|
torch.tensor(
|
|
|
[w, h], device=self.device, dtype=size_logits.dtype
|
|
|
),
|
|
|
self.region,
|
|
|
)
|
|
|
.unsqueeze(0)
|
|
|
.unsqueeze(0)
|
|
|
)
|
|
|
|
|
|
|
|
|
out.append(
|
|
|
{
|
|
|
"x_min": x_center.item() - w.item() / 2,
|
|
|
"y_min": y_center.item() - h.item() / 2,
|
|
|
"x_max": x_center.item() + w.item() / 2,
|
|
|
"y_max": y_center.item() + h.item() / 2,
|
|
|
}
|
|
|
)
|
|
|
else:
|
|
|
out.append({"x": x_center.item(), "y": y_center.item()})
|
|
|
|
|
|
|
|
|
mask[:, :, pos], pos_ids[0] = 1, pos
|
|
|
logits, hidden = self._decode_one_tok(next_emb, mask, pos_ids, lora)
|
|
|
pos += 1
|
|
|
next_token = torch.argmax(logits, dim=-1)
|
|
|
|
|
|
return out
|
|
|
|
|
|
def detect(
|
|
|
self,
|
|
|
image: Union[Image.Image, EncodedImage],
|
|
|
object: str,
|
|
|
settings: Optional[ObjectSamplingSettings] = None,
|
|
|
):
|
|
|
if self.config.tokenizer.templates["detect"] is None:
|
|
|
raise NotImplementedError("Model does not support object detection.")
|
|
|
|
|
|
image = self.encode_image(image, settings)
|
|
|
self.load_encoded_image(image)
|
|
|
|
|
|
prompt_tokens = torch.tensor(
|
|
|
[
|
|
|
self.config.tokenizer.templates["detect"]["prefix"]
|
|
|
+ self.tokenizer.encode(" " + object).ids
|
|
|
+ self.config.tokenizer.templates["detect"]["suffix"]
|
|
|
],
|
|
|
device=self.device,
|
|
|
)
|
|
|
|
|
|
lora = (
|
|
|
variant_state_dict(settings["variant"], device=self.device)
|
|
|
if settings is not None and "variant" in settings
|
|
|
else None
|
|
|
)
|
|
|
|
|
|
_, hidden, next_token, pos = self._prefill_prompt(
|
|
|
prompt_tokens, image.pos, temperature=0, top_p=0, lora=lora
|
|
|
)
|
|
|
hidden = hidden[:, -1:, :]
|
|
|
|
|
|
max_objects = (
|
|
|
settings.get("max_objects", DEFAULT_MAX_OBJECTS)
|
|
|
if settings
|
|
|
else DEFAULT_MAX_OBJECTS
|
|
|
)
|
|
|
objects = self._generate_points(
|
|
|
hidden,
|
|
|
next_token,
|
|
|
pos,
|
|
|
include_size=True,
|
|
|
max_objects=max_objects,
|
|
|
lora=lora,
|
|
|
)
|
|
|
|
|
|
return {"objects": objects}
|
|
|
|
|
|
def point(
|
|
|
self,
|
|
|
image: Union[Image.Image, EncodedImage],
|
|
|
object: str,
|
|
|
settings: Optional[ObjectSamplingSettings] = None,
|
|
|
):
|
|
|
if self.config.tokenizer.templates["point"] is None:
|
|
|
raise NotImplementedError("Model does not support pointing.")
|
|
|
|
|
|
image = self.encode_image(image, settings)
|
|
|
self.load_encoded_image(image)
|
|
|
|
|
|
prompt_tokens = torch.tensor(
|
|
|
[
|
|
|
self.config.tokenizer.templates["point"]["prefix"]
|
|
|
+ self.tokenizer.encode(" " + object).ids
|
|
|
+ self.config.tokenizer.templates["point"]["suffix"]
|
|
|
],
|
|
|
device=self.device,
|
|
|
)
|
|
|
|
|
|
lora = (
|
|
|
variant_state_dict(settings["variant"], device=self.device)
|
|
|
if settings is not None and "variant" in settings
|
|
|
else None
|
|
|
)
|
|
|
|
|
|
_, hidden, next_token, pos = self._prefill_prompt(
|
|
|
prompt_tokens, image.pos, temperature=0, top_p=0, lora=lora
|
|
|
)
|
|
|
hidden = hidden[:, -1:, :]
|
|
|
|
|
|
max_objects = (
|
|
|
settings.get("max_objects", DEFAULT_MAX_OBJECTS)
|
|
|
if settings
|
|
|
else DEFAULT_MAX_OBJECTS
|
|
|
)
|
|
|
objects = self._generate_points(
|
|
|
hidden,
|
|
|
next_token,
|
|
|
pos,
|
|
|
include_size=False,
|
|
|
max_objects=max_objects,
|
|
|
lora=lora,
|
|
|
)
|
|
|
|
|
|
return {"points": objects}
|
|
|
|
|
|
def _detect_gaze(
|
|
|
self,
|
|
|
image: EncodedImage,
|
|
|
source: Tuple[float, float],
|
|
|
force_detect: bool = False,
|
|
|
):
|
|
|
with torch.inference_mode():
|
|
|
before_emb = text_encoder(
|
|
|
torch.tensor(
|
|
|
[self.tokenizer.encode("\n\nPoint:").ids], device=self.device
|
|
|
),
|
|
|
self.text,
|
|
|
)
|
|
|
after_emb = text_encoder(
|
|
|
torch.tensor(
|
|
|
[self.tokenizer.encode(" gaze\n\n").ids], device=self.device
|
|
|
),
|
|
|
self.text,
|
|
|
)
|
|
|
x_emb = encode_coordinate(
|
|
|
torch.tensor([[[source[0]]]], device=self.device, dtype=torch.bfloat16),
|
|
|
self.region,
|
|
|
)
|
|
|
y_emb = encode_coordinate(
|
|
|
torch.tensor([[[source[1]]]], device=self.device, dtype=torch.bfloat16),
|
|
|
self.region,
|
|
|
)
|
|
|
|
|
|
prompt_emb = torch.cat([before_emb, x_emb, y_emb, after_emb], dim=1)
|
|
|
|
|
|
self.load_encoded_image(image)
|
|
|
|
|
|
mask = self.attn_mask[:, :, image.pos : image.pos + prompt_emb.size(1), :]
|
|
|
pos_ids = torch.arange(
|
|
|
image.pos, image.pos + prompt_emb.size(1), dtype=torch.long
|
|
|
)
|
|
|
hidden = self._prefill(prompt_emb, mask, pos_ids, lora=None)
|
|
|
logits = lm_head(hidden, self.text)
|
|
|
next_token = torch.argmax(logits, dim=-1)
|
|
|
pos = image.pos + prompt_emb.size(1)
|
|
|
hidden = hidden[:, -1:, :]
|
|
|
|
|
|
if force_detect:
|
|
|
next_token = torch.tensor([[0]], device=self.device)
|
|
|
|
|
|
if next_token.item() == self.config.tokenizer.eos_id:
|
|
|
return None
|
|
|
|
|
|
gaze = self._generate_points(
|
|
|
hidden, next_token, pos, include_size=False, max_objects=1
|
|
|
)
|
|
|
return gaze[0]
|
|
|
|
|
|
def detect_gaze(
|
|
|
self,
|
|
|
image: Union[Image.Image, EncodedImage],
|
|
|
eye: Optional[Tuple[float, float]] = None,
|
|
|
face: Optional[Dict[str, float]] = None,
|
|
|
unstable_settings: Dict[str, Any] = {},
|
|
|
):
|
|
|
if "force_detect" in unstable_settings:
|
|
|
force_detect = unstable_settings["force_detect"]
|
|
|
else:
|
|
|
force_detect = False
|
|
|
|
|
|
if "prioritize_accuracy" in unstable_settings:
|
|
|
prioritize_accuracy = unstable_settings["prioritize_accuracy"]
|
|
|
else:
|
|
|
prioritize_accuracy = False
|
|
|
|
|
|
if not prioritize_accuracy:
|
|
|
if eye is None:
|
|
|
raise ValueError("eye must be provided when prioritize_accuracy=False")
|
|
|
image = self.encode_image(image)
|
|
|
return {"gaze": self._detect_gaze(image, eye, force_detect=force_detect)}
|
|
|
else:
|
|
|
if (
|
|
|
not isinstance(image, Image.Image)
|
|
|
and "flip_enc_img" not in unstable_settings
|
|
|
):
|
|
|
raise ValueError(
|
|
|
"image must be a PIL Image when prioritize_accuracy=True, "
|
|
|
"or flip_enc_img must be provided"
|
|
|
)
|
|
|
if face is None:
|
|
|
raise ValueError("face must be provided when prioritize_accuracy=True")
|
|
|
|
|
|
encoded_image = self.encode_image(image)
|
|
|
if (
|
|
|
isinstance(image, Image.Image)
|
|
|
and "flip_enc_img" not in unstable_settings
|
|
|
):
|
|
|
flipped_pil = image.copy()
|
|
|
flipped_pil = flipped_pil.transpose(method=Image.FLIP_LEFT_RIGHT)
|
|
|
encoded_flipped_image = self.encode_image(flipped_pil)
|
|
|
else:
|
|
|
encoded_flipped_image = unstable_settings["flip_enc_img"]
|
|
|
|
|
|
N = 10
|
|
|
|
|
|
detections = [
|
|
|
self._detect_gaze(
|
|
|
encoded_image,
|
|
|
(
|
|
|
random.uniform(face["x_min"], face["x_max"]),
|
|
|
random.uniform(face["y_min"], face["y_max"]),
|
|
|
),
|
|
|
force_detect=force_detect,
|
|
|
)
|
|
|
for _ in range(N)
|
|
|
]
|
|
|
detections = [
|
|
|
(gaze["x"], gaze["y"]) for gaze in detections if gaze is not None
|
|
|
]
|
|
|
flipped_detections = [
|
|
|
self._detect_gaze(
|
|
|
encoded_flipped_image,
|
|
|
(
|
|
|
1 - random.uniform(face["x_min"], face["x_max"]),
|
|
|
random.uniform(face["y_min"], face["y_max"]),
|
|
|
),
|
|
|
force_detect=force_detect,
|
|
|
)
|
|
|
for _ in range(N)
|
|
|
]
|
|
|
detections.extend(
|
|
|
[
|
|
|
(1 - gaze["x"], gaze["y"])
|
|
|
for gaze in flipped_detections
|
|
|
if gaze is not None
|
|
|
]
|
|
|
)
|
|
|
|
|
|
if len(detections) < N:
|
|
|
return {"gaze": None}
|
|
|
|
|
|
detections = remove_outlier_points(detections)
|
|
|
mean_gaze = (
|
|
|
sum(gaze[0] for gaze in detections) / len(detections),
|
|
|
sum(gaze[1] for gaze in detections) / len(detections),
|
|
|
)
|
|
|
|
|
|
return {"gaze": {"x": mean_gaze[0], "y": mean_gaze[1]}}
|
|
|
|
|
|
|
|
|
def _is_cjk_char(cp):
|
|
|
"""Checks whether CP is the codepoint of a CJK character."""
|
|
|
|
|
|
|
|
|
if (
|
|
|
(cp >= 0x4E00 and cp <= 0x9FFF)
|
|
|
or (cp >= 0x3400 and cp <= 0x4DBF)
|
|
|
or (cp >= 0x2F800 and cp <= 0x2FA1F)
|
|
|
):
|
|
|
return True
|
|
|
return False
|
|
|
|