lekssays commited on
Commit
b4c700c
·
verified ·
1 Parent(s): 014188d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +12 -53
README.md CHANGED
@@ -4,14 +4,16 @@ tags:
4
  - sentence-transformers
5
  - feature-extraction
6
  - sentence-similarity
7
-
 
 
8
  ---
9
 
10
- # {MODEL_NAME}
11
 
12
  This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
13
 
14
- <!--- Describe your model here -->
15
 
16
  ## Usage (Sentence-Transformers)
17
 
@@ -27,62 +29,19 @@ Then you can use the model like this:
27
  from sentence_transformers import SentenceTransformer
28
  sentences = ["This is an example sentence", "Each sentence is converted"]
29
 
30
- model = SentenceTransformer('{MODEL_NAME}')
31
  embeddings = model.encode(sentences)
32
  print(embeddings)
33
  ```
34
 
35
-
36
-
37
- ## Evaluation Results
38
-
39
- <!--- Describe how your model was evaluated -->
40
-
41
- For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
42
-
43
-
44
- ## Training
45
- The model was trained with the parameters:
46
-
47
- **DataLoader**:
48
-
49
- `torch.utils.data.dataloader.DataLoader` of length 296 with parameters:
50
- ```
51
- {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
52
- ```
53
-
54
- **Loss**:
55
-
56
- `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss`
57
-
58
- Parameters of the fit()-Method:
59
  ```
60
- {
61
- "epochs": 10,
62
- "evaluation_steps": 100,
63
- "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
64
- "max_grad_norm": 1,
65
- "optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
66
- "optimizer_params": {
67
- "lr": 2e-05
68
- },
69
- "scheduler": "WarmupLinear",
70
- "steps_per_epoch": null,
71
- "warmup_steps": 296,
72
- "weight_decay": 0.01
73
  }
74
  ```
75
 
76
 
77
- ## Full Model Architecture
78
- ```
79
- SentenceTransformer(
80
- (0): Transformer({'max_seq_length': 514, 'do_lower_case': False}) with Transformer model: BertModel
81
- (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
82
- (2): Normalize()
83
- )
84
- ```
85
-
86
- ## Citing & Authors
87
-
88
- <!--- Describe where people can find more information -->
 
4
  - sentence-transformers
5
  - feature-extraction
6
  - sentence-similarity
7
+ - mitre_ttps
8
+ - security
9
+ - adversarial-threat-annotation
10
  ---
11
 
12
+ # SentSecBert_10k_AllDataSplit
13
 
14
  This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
15
 
16
+ This is a model used in our work "Semantic Ranking for Automated Adversarial Technique Annotation in Security Text". The code is available at: [https://github.com/qcri/Text2TTP](https://github.com/qcri/Text2TTP)
17
 
18
  ## Usage (Sentence-Transformers)
19
 
 
29
  from sentence_transformers import SentenceTransformer
30
  sentences = ["This is an example sentence", "Each sentence is converted"]
31
 
32
+ model = SentenceTransformer('SentSecBert')
33
  embeddings = model.encode(sentences)
34
  print(embeddings)
35
  ```
36
 
37
+ ## Citation
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38
  ```
39
+ @article{kumarasinghe2024semantic,
40
+ title={Semantic Ranking for Automated Adversarial Technique Annotation in Security Text},
41
+ author={Kumarasinghe, Udesh and Lekssays, Ahmed and Sencar, Husrev Taha and Boughorbel, Sabri and Elvitigala, Charitha and Nakov, Preslav},
42
+ journal={arXiv preprint arXiv:2403.17068},
43
+ year={2024}
 
 
 
 
 
 
 
 
44
  }
45
  ```
46
 
47