Update modeling_mplug_owl2.py
Browse files- modeling_mplug_owl2.py +1 -1
modeling_mplug_owl2.py
CHANGED
@@ -271,7 +271,7 @@ class MPLUGOwl2LlamaForCausalLM(LlamaForCausalLM, MPLUGOwl2MetaForCausalLM):
|
|
271 |
):
|
272 |
if not hasattr(self, "weight_tensor"):
|
273 |
self.weight_tensor = torch.Tensor([5.,4.,3.,2.,1.]).half().to(self.device)
|
274 |
-
prompt = "USER: How would you rate the {} of this {}?\n<|image|>\nASSISTANT: The {} of the {} is".format(task_, input_,
|
275 |
if input_ == "image":
|
276 |
images = [expand2square(img, tuple(int(x*255) for x in self.image_processor.image_mean)) for img in images]
|
277 |
input_ids = tokenizer_image_token(prompt, self.tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).to(self.device)
|
|
|
271 |
):
|
272 |
if not hasattr(self, "weight_tensor"):
|
273 |
self.weight_tensor = torch.Tensor([5.,4.,3.,2.,1.]).half().to(self.device)
|
274 |
+
prompt = "USER: How would you rate the {} of this {}?\n<|image|>\nASSISTANT: The {} of the {} is".format(task_, input_, task_, input_)
|
275 |
if input_ == "image":
|
276 |
images = [expand2square(img, tuple(int(x*255) for x in self.image_processor.image_mean)) for img in images]
|
277 |
input_ids = tokenizer_image_token(prompt, self.tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).to(self.device)
|