H4nwei commited on
Commit
2c523d1
1 Parent(s): 48e5da0

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +50 -0
README.md ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ ---
4
+
5
+
6
+ The model corresponds to [Compare2Score](https://compare2score.github.io/).
7
+
8
+ ## Quick Start with AutoModel
9
+
10
+ <!-- For this image, ![](https://raw.githubusercontent.com/Q-Future/Q-Align/main/fig/singapore_flyer.jpg) start an AutoModel scorer with `transformers==4.36.1`:
11
+ -->
12
+ ```python
13
+ import requests
14
+ import torch
15
+ from transformers import AutoModelForCausalLM
16
+
17
+ model = AutoModelForCausalLM.from_pretrained("q-future/Compare2Score", trust_remote_code=True, attn_implementation="eager",
18
+ torch_dtype=torch.float16, device_map="auto")
19
+
20
+ from PIL import Image
21
+ image_path_url = "https://raw.githubusercontent.com/Q-Future/Q-Align/main/fig/singapore_flyer.jpg"
22
+ print("The quality score of this image is {}".format(model.score(image_path_url))
23
+ ```
24
+
25
+ ## Evaluation with GitHub
26
+ ```shell
27
+ git clone https://github.com/Q-Future/Compare2Score.git
28
+ cd Compare2Score
29
+ pip install -e .
30
+ ```
31
+
32
+ ```python
33
+ from q_align import Compare2Scorer
34
+ from PIL import Image
35
+
36
+ scorer = Compare2Scorer()
37
+ image_path = "figs/i04_03_4.bmp"
38
+ print("The quality score of this image is {}.".format(scorer(image_path)))
39
+ ```
40
+
41
+ ## Citation
42
+
43
+ ```bibtex
44
+ @article{zhu2024adaptive,
45
+ title={Adaptive Image Quality Assessment via Teaching Large Multimodal Model to Compare},
46
+ author={Zhu, Hanwei and Wu, Haoning and Li, Yixuan and Zhang, Zicheng and Chen, Baoliang and Zhu, Lingyu and Fang, Yuming and Zhai, Guangtao and Lin, Weisi and Wang, Shiqi},
47
+ journal={arXiv preprint arXiv:2405.19298},
48
+ year={2024},
49
+ }
50
+ ```