|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from abc import ABC, abstractmethod |
|
from typing import List, Optional, Tuple, Union |
|
from datasets import load_dataset |
|
import torch |
|
import torch.nn as nn |
|
from torch.nn import CrossEntropyLoss |
|
import numpy as np |
|
import copy |
|
import os |
|
import sys |
|
from PIL import Image |
|
import requests |
|
from io import BytesIO |
|
|
|
dir_path = os.path.dirname(os.path.realpath(__file__)) |
|
sys.path.insert(0, dir_path) |
|
|
|
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, CLIPImageProcessor, LlamaConfig, LlamaModel, LlamaForCausalLM |
|
from transformers.modeling_outputs import CausalLMOutputWithPast |
|
|
|
from .configuration_mplug_owl2 import MPLUGOwl2Config, MplugOwlVisionConfig, MplugOwlVisualAbstractorConfig |
|
from .visual_encoder import MplugOwlVisionModel, MplugOwlVisualAbstractorModel |
|
from .modeling_llama2 import replace_llama_modality_adaptive |
|
from .modeling_attn_mask_utils import _prepare_4d_causal_attention_mask |
|
|
|
IGNORE_INDEX = -100 |
|
IMAGE_TOKEN_INDEX = -200 |
|
DEFAULT_IMAGE_TOKEN = "<|image|>" |
|
from icecream import ic |
|
|
|
def tokenizer_image_token(prompt, tokenizer, image_token_index=IMAGE_TOKEN_INDEX, return_tensors=None): |
|
prompt_chunks = [tokenizer(chunk).input_ids if len(chunk) > 0 else [] for chunk in prompt.split(DEFAULT_IMAGE_TOKEN)] |
|
|
|
def insert_separator(X, sep): |
|
return [ele for sublist in zip(X, [sep]*len(X)) for ele in sublist][:-1] |
|
|
|
input_ids = [] |
|
offset = 0 |
|
if len(prompt_chunks) > 0 and len(prompt_chunks[0]) > 0 and prompt_chunks[0][0] == tokenizer.bos_token_id: |
|
offset = 1 |
|
input_ids.append(prompt_chunks[0][0]) |
|
|
|
for x in insert_separator(prompt_chunks, [image_token_index] * (offset + 1)): |
|
input_ids.extend(x[offset:]) |
|
|
|
if return_tensors is not None: |
|
if return_tensors == 'pt': |
|
return torch.tensor(input_ids, dtype=torch.long) |
|
raise ValueError(f'Unsupported tensor type: {return_tensors}') |
|
return input_ids |
|
|
|
def expand2square(pil_img, background_color): |
|
from PIL import Image |
|
width, height = pil_img.size |
|
if width == height: |
|
return pil_img |
|
elif width > height: |
|
result = Image.new(pil_img.mode, (width, width), background_color) |
|
result.paste(pil_img, (0, (width - height) // 2)) |
|
return result |
|
else: |
|
result = Image.new(pil_img.mode, (height, height), background_color) |
|
result.paste(pil_img, ((height - width) // 2, 0)) |
|
return result |
|
|
|
def norm_cdf(x): |
|
return 0.5 * (1 + torch.erf(x / torch.sqrt(torch.tensor(2.0)))) |
|
|
|
def optimize_score_map_pytorch_cuda(c, seed=0, original_seed=20020, num_iterations=100): |
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
torch.manual_seed(seed) |
|
np.random.seed(seed) |
|
|
|
c = torch.tensor(c, dtype=torch.float32, device=device, requires_grad=False) |
|
initial_scores = torch.rand(c.shape[0], device=device, requires_grad=True) |
|
|
|
optimizer = torch.optim.Adam([initial_scores], lr=0.1) |
|
|
|
for _ in range(num_iterations): |
|
optimizer.zero_grad() |
|
sum_log_diff = torch.sum(c * torch.log(torch.maximum(torch.sigmoid(initial_scores[:, None] - initial_scores), torch.tensor(1e-6, device=device)))) |
|
sum_squares = torch.sum(initial_scores ** 2) / 2 |
|
|
|
loss = -(sum_log_diff - sum_squares) |
|
loss.backward() |
|
optimizer.step() |
|
|
|
optimized_scores = initial_scores.detach().cpu().numpy() |
|
min_score, max_score = np.min(optimized_scores), np.max(optimized_scores) |
|
|
|
|
|
scaled_scores = 100 * (optimized_scores - min_score) / (max_score - min_score) |
|
|
|
|
|
np.random.seed(original_seed) |
|
return scaled_scores[-1] |
|
|
|
def softmax(logits): |
|
|
|
probs = np.exp(logits) / np.sum(np.exp(logits)) |
|
return probs |
|
|
|
|
|
def update_matrix(anchor_matrix, scores, indices): |
|
n = anchor_matrix.shape[0] |
|
new_row = np.zeros((1, n)) |
|
new_col = np.zeros((n + 1, 1)) |
|
new_row[0, indices] = scores |
|
new_col[indices, 0] = 1-scores |
|
anchor_matrix = np.vstack([anchor_matrix, new_row]) |
|
anchor_matrix = np.hstack([anchor_matrix, new_col]) |
|
|
|
return anchor_matrix |
|
|
|
|
|
class MPLUGOwl2MetaModel: |
|
def __init__(self, config): |
|
super(MPLUGOwl2MetaModel, self).__init__(config) |
|
self.vision_model = MplugOwlVisionModel( |
|
MplugOwlVisionConfig(**config.visual_config["visual_model"]) |
|
) |
|
self.visual_abstractor = MplugOwlVisualAbstractorModel( |
|
MplugOwlVisualAbstractorConfig(**config.visual_config["visual_abstractor"]), config.hidden_size |
|
) |
|
|
|
def get_vision_tower(self): |
|
vision_model = getattr(self, 'vision_model', None) |
|
if type(vision_model) is list: |
|
vision_model = vision_model[0] |
|
return vision_model |
|
|
|
def get_visual_abstractor(self): |
|
visual_abstractor = getattr(self, 'visual_abstractor', None) |
|
if type(visual_abstractor) is list: |
|
visual_abstractor = visual_abstractor[0] |
|
return visual_abstractor |
|
|
|
|
|
class MPLUGOwl2MetaForCausalLM(ABC): |
|
@abstractmethod |
|
def get_model(self): |
|
pass |
|
|
|
def encode_images(self, images): |
|
image_features = self.get_model().vision_model(images).last_hidden_state |
|
image_features = self.get_model().visual_abstractor(encoder_hidden_states=image_features).last_hidden_state |
|
return image_features |
|
|
|
def prepare_inputs_labels_for_multimodal( |
|
self, input_ids, attention_mask, past_key_values, labels, images |
|
): |
|
if images is None or input_ids.shape[1] == 1: |
|
if past_key_values is not None and images is not None and input_ids.shape[1] == 1: |
|
attention_mask = torch.ones((attention_mask.shape[0], past_key_values[-1][-1].shape[-2] + 1), dtype=attention_mask.dtype, device=attention_mask.device) |
|
multiway_indices = torch.zeros_like(input_ids).long().to(self.device) |
|
return input_ids, multiway_indices, attention_mask, past_key_values, None, labels |
|
|
|
if type(images) is list or images.ndim == 5: |
|
concat_images = torch.cat([image for image in images], dim=0) |
|
image_features = self.encode_images(concat_images) |
|
split_sizes = [image.shape[0] for image in images] |
|
image_features = torch.split(image_features, split_sizes, dim=0) |
|
image_features = [x.flatten(0, 1) for x in image_features] |
|
else: |
|
image_features = self.encode_images(images) |
|
|
|
new_input_embeds = [] |
|
new_modality_indicators = [] |
|
new_labels = [] if labels is not None else None |
|
cur_image_idx = 0 |
|
for batch_idx, cur_input_ids in enumerate(input_ids): |
|
if (cur_input_ids == IMAGE_TOKEN_INDEX).sum() == 0: |
|
|
|
|
|
half_len = cur_input_ids.shape[0] // 2 |
|
cur_image_features = image_features[cur_image_idx] |
|
cur_input_embeds_1 = self.get_model().embed_tokens(cur_input_ids[:half_len]) |
|
cur_input_embeds_2 = self.get_model().embed_tokens(cur_input_ids[half_len:]) |
|
cur_input_embeds = torch.cat([cur_input_embeds_1, cur_image_features[0:0], cur_input_embeds_2], dim=0) |
|
new_input_embeds.append(cur_input_embeds) |
|
|
|
cur_modality_indicators = torch.zeros(len(cur_input_embeds)).long().to(self.device) |
|
new_modality_indicators.append(cur_modality_indicators) |
|
if labels is not None: |
|
new_labels.append(labels[batch_idx]) |
|
cur_image_idx += 1 |
|
continue |
|
image_token_indices = torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0] |
|
cur_new_input_embeds = [] |
|
cur_modality_indicators = [] |
|
if labels is not None: |
|
cur_labels = labels[batch_idx] |
|
cur_new_labels = [] |
|
assert cur_labels.shape == cur_input_ids.shape |
|
while image_token_indices.numel() > 0: |
|
|
|
cur_image_features = image_features[cur_image_idx] |
|
image_token_start = image_token_indices[0] |
|
cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids[:image_token_start])) |
|
cur_new_input_embeds.append(cur_image_features) |
|
|
|
|
|
assert image_token_start == len(cur_input_ids[:image_token_start]) |
|
cur_modality_indicators.append(torch.zeros(len(cur_input_ids[:image_token_start])).long()) |
|
cur_modality_indicators.append(torch.ones(len(cur_image_features)).long()) |
|
|
|
if labels is not None: |
|
cur_new_labels.append(cur_labels[:image_token_start]) |
|
cur_new_labels.append(torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=labels.device, dtype=labels.dtype)) |
|
cur_labels = cur_labels[image_token_start+1:] |
|
cur_image_idx += 1 |
|
cur_input_ids = cur_input_ids[image_token_start+1:] |
|
image_token_indices = torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0] |
|
if cur_input_ids.numel() > 0: |
|
cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids)) |
|
cur_modality_indicators.append(torch.zeros(len(cur_input_ids)).long()) |
|
if labels is not None: |
|
cur_new_labels.append(cur_labels) |
|
cur_new_input_embeds = [x.to(device=self.device) for x in cur_new_input_embeds] |
|
cur_new_input_embeds = torch.cat(cur_new_input_embeds, dim=0) |
|
new_input_embeds.append(cur_new_input_embeds) |
|
|
|
|
|
cur_modality_indicators = [x.to(device=self.device) for x in cur_modality_indicators] |
|
cur_modality_indicators = torch.cat(cur_modality_indicators, dim=0) |
|
new_modality_indicators.append(cur_modality_indicators) |
|
|
|
|
|
if labels is not None: |
|
cur_new_labels = torch.cat(cur_new_labels, dim=0) |
|
new_labels.append(cur_new_labels) |
|
|
|
if any(x.shape != new_input_embeds[0].shape for x in new_input_embeds): |
|
max_len = max(x.shape[0] for x in new_input_embeds) |
|
|
|
|
|
new_input_embeds_align = [] |
|
for cur_new_embed in new_input_embeds: |
|
cur_new_embed = torch.cat((cur_new_embed, torch.zeros((max_len - cur_new_embed.shape[0], cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device)), dim=0) |
|
new_input_embeds_align.append(cur_new_embed) |
|
new_input_embeds = torch.stack(new_input_embeds_align, dim=0) |
|
|
|
|
|
new_modality_indicators_align = [] |
|
for cur_modality_indicator in new_modality_indicators: |
|
cur_new_embed = torch.cat((cur_modality_indicator, torch.zeros(max_len - cur_modality_indicator.shape[0], dtype=cur_modality_indicator.dtype, device=cur_modality_indicator.device)), dim=0) |
|
new_modality_indicators_align.append(cur_new_embed) |
|
new_modality_indicators = torch.stack(new_modality_indicators_align, dim=0) |
|
|
|
|
|
if labels is not None: |
|
new_labels_align = [] |
|
_new_labels = new_labels |
|
for cur_new_label in new_labels: |
|
cur_new_label = torch.cat((cur_new_label, torch.full((max_len - cur_new_label.shape[0],), IGNORE_INDEX, dtype=cur_new_label.dtype, device=cur_new_label.device)), dim=0) |
|
new_labels_align.append(cur_new_label) |
|
new_labels = torch.stack(new_labels_align, dim=0) |
|
|
|
|
|
if attention_mask is not None: |
|
new_attention_mask = [] |
|
for cur_attention_mask, cur_new_labels, cur_new_labels_align in zip(attention_mask, _new_labels, new_labels): |
|
new_attn_mask_pad_left = torch.full((cur_new_labels.shape[0] - labels.shape[1],), True, dtype=attention_mask.dtype, device=attention_mask.device) |
|
new_attn_mask_pad_right = torch.full((cur_new_labels_align.shape[0] - cur_new_labels.shape[0],), False, dtype=attention_mask.dtype, device=attention_mask.device) |
|
cur_new_attention_mask = torch.cat((new_attn_mask_pad_left, cur_attention_mask, new_attn_mask_pad_right), dim=0) |
|
new_attention_mask.append(cur_new_attention_mask) |
|
attention_mask = torch.stack(new_attention_mask, dim=0) |
|
assert attention_mask.shape == new_labels.shape |
|
else: |
|
new_input_embeds = torch.stack(new_input_embeds, dim=0) |
|
new_modality_indicators = torch.stack(new_modality_indicators, dim=0) |
|
if labels is not None: |
|
new_labels = torch.stack(new_labels, dim=0) |
|
|
|
if attention_mask is not None: |
|
new_attn_mask_pad_left = torch.full((attention_mask.shape[0], new_input_embeds.shape[1] - input_ids.shape[1]), True, dtype=attention_mask.dtype, device=attention_mask.device) |
|
attention_mask = torch.cat((new_attn_mask_pad_left, attention_mask), dim=1) |
|
assert attention_mask.shape == new_input_embeds.shape[:2] |
|
return None, new_modality_indicators, attention_mask, past_key_values, new_input_embeds, new_labels |
|
|
|
|
|
|
|
class MPLUGOwl2LlamaModel(MPLUGOwl2MetaModel, LlamaModel): |
|
config_class = MPLUGOwl2Config |
|
|
|
def __init__(self, config: MPLUGOwl2Config): |
|
super(MPLUGOwl2LlamaModel, self).__init__(config) |
|
|
|
|
|
class MPLUGOwl2LlamaForCausalLM(LlamaForCausalLM, MPLUGOwl2MetaForCausalLM): |
|
config_class = MPLUGOwl2Config |
|
|
|
def __init__(self, config): |
|
super(LlamaForCausalLM, self).__init__(config) |
|
self.model = MPLUGOwl2LlamaModel(config) |
|
self.tokenizer = AutoTokenizer.from_pretrained("VQA-CityU/Compare2Score_1") |
|
self.image_processor = CLIPImageProcessor.from_pretrained("VQA-CityU/Compare2Score_1") |
|
|
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) |
|
self.preferential_ids_ = [id_[1] for id_ in self.tokenizer(["inferior", "worse", "similar", "better", "superior"])["input_ids"]] |
|
self.anchor_images = load_dataset("VQA-CityU/Anchor_images") |
|
|
|
self.weight_tensor = np.array([0., 0.25, 0.5, 0.75, 1.], dtype=np.float16) |
|
self.anchor_matrix = np.array( |
|
[[5.0000000e-01, 2.5912809e-01, 3.3130276e-04, 1.6087297e-06, 1.1803027e-09], |
|
[7.4087191e-01, 5.0000000e-01, 2.4985345e-01, 9.9954158e-02, 1.8675303e-08], |
|
[9.9966872e-01, 7.5014657e-01, 5.0000000e-01, 4.9968880e-01, 2.4852838e-01], |
|
[9.9999839e-01, 9.0004587e-01, 5.0031120e-01, 5.0000000e-01, 2.5400183e-01], |
|
[1.0000000e+00, 1.0000000e+00, 7.5147164e-01, 7.4599814e-01, 5.0000000e-01]], |
|
dtype=np.float32) |
|
anchor_intervals = 5 |
|
num_anchor_image_per_interval = 1 |
|
num_anchor_image = anchor_intervals * num_anchor_image_per_interval |
|
self.anchor_indices = np.arange(0,num_anchor_image) |
|
|
|
self.post_init() |
|
|
|
|
|
def get_model(self): |
|
return self.model |
|
|
|
def download_image(self, url): |
|
response = requests.get(url) |
|
return Image.open(BytesIO(response.content)).convert('RGB') |
|
|
|
def load_image(self, path): |
|
if path.startswith('http://') or path.startswith('https://'): |
|
return self.download_image(path) |
|
return Image.open(path).convert('RGB') |
|
|
|
def score(self, image_path): |
|
prompt = "USER: <|image|> <|image|> Compared with the first image, what is your quality rating for second image? \nASSISTANT: The quality of the second image is" |
|
input_ids = tokenizer_image_token(prompt, self.tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).to(self.device) |
|
|
|
anchor_images = [item['image'] for item in self.anchor_images['train']] |
|
|
|
probabilities = [] |
|
for index in self.anchor_indices: |
|
anchor_image = anchor_images[index] |
|
image = self.load_image(image_path) |
|
images = [anchor_image, image] |
|
images = [expand2square(img, tuple(int(x*255) for x in self.image_processor.image_mean)) for img in images] |
|
image_tensor = self.image_processor.preprocess(images, return_tensors='pt')['pixel_values'].half().to(self.device) |
|
|
|
with torch.inference_mode(): |
|
output_logits = self(input_ids, images=image_tensor)["logits"][:, -1, self.preferential_ids_] |
|
output_logits = output_logits.cpu().detach().numpy() / 100 |
|
probabilities.append(np.dot(softmax(output_logits), self.weight_tensor)) |
|
updated_matrix = update_matrix(self.anchor_matrix, np.squeeze(np.array(probabilities)), self.anchor_indices) |
|
score = optimize_score_map_pytorch_cuda(updated_matrix, seed=0, original_seed=20020, num_iterations=100) |
|
return score |
|
|
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
images: Optional[torch.FloatTensor] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, CausalLMOutputWithPast]: |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
input_ids, modality_indicators, attention_mask, past_key_values, inputs_embeds, labels = \ |
|
self.prepare_inputs_labels_for_multimodal(input_ids, attention_mask, past_key_values, labels, images) |
|
|
|
|
|
outputs = self.model( |
|
input_ids=input_ids, |
|
modality_indicators=modality_indicators, |
|
attention_mask=attention_mask, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict |
|
) |
|
|
|
hidden_states = outputs[0] |
|
logits = self.lm_head(hidden_states) |
|
|
|
loss = None |
|
if labels is not None: |
|
|
|
shift_logits = logits[..., :-1, :].contiguous() |
|
shift_labels = labels[..., 1:].contiguous() |
|
|
|
loss_fct = CrossEntropyLoss() |
|
shift_logits = shift_logits.view(-1, self.config.vocab_size) |
|
shift_labels = shift_labels.view(-1) |
|
|
|
shift_labels = shift_labels.to(shift_logits.device) |
|
loss = loss_fct(shift_logits, shift_labels) |
|
|
|
if not return_dict: |
|
output = (logits,) + outputs[1:] |
|
return (loss,) + output if loss is not None else output |
|
|
|
return CausalLMOutputWithPast( |
|
loss=loss, |
|
logits=logits, |
|
past_key_values=outputs.past_key_values, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
def prepare_inputs_for_generation( |
|
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs |
|
): |
|
if past_key_values: |
|
input_ids = input_ids[:, -1:] |
|
|
|
|
|
if inputs_embeds is not None and past_key_values is None: |
|
model_inputs = {"inputs_embeds": inputs_embeds} |
|
else: |
|
model_inputs = {"input_ids": input_ids} |
|
|
|
model_inputs.update( |
|
{ |
|
"past_key_values": past_key_values, |
|
"use_cache": kwargs.get("use_cache"), |
|
"attention_mask": attention_mask, |
|
"images": kwargs.get("images", None), |
|
} |
|
) |
|
return model_inputs |
|
|
|
AutoConfig.register("mplug_owl2", MPLUGOwl2Config) |
|
AutoModelForCausalLM.register(MPLUGOwl2Config, MPLUGOwl2LlamaForCausalLM) |
|
|
|
replace_llama_modality_adaptive() |
|
|
|
if __name__ == "__main__": |
|
|
|
from icecream import ic |
|
|
|
|
|
model = AutoModelForCausalLM.from_pretrained('VQA-CityU/Compare2Score_1', trust_remote_code=True, |
|
torch_dtype=torch.float16, device_map="auto") |
|
|
|
model.score("/home/zhw/IQA/code/NeurIPS24/Q-Align/playground/data/TID2013/distorted_images/i01_01_5.bmp") |
|
url = "https://raw.githubusercontent.com/Q-Future/Q-Align/main/fig/singapore_flyer.jpg" |
|
model.score(url) |
|
|