Upload pipeline_ncsn.py with huggingface_hub
Browse files- pipeline_ncsn.py +9 -9
pipeline_ncsn.py
CHANGED
@@ -5,11 +5,11 @@ from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback
|
|
5 |
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, ImagePipelineOutput
|
6 |
from einops import rearrange
|
7 |
|
8 |
-
from .scheduling_ncsn import (
|
9 |
-
|
10 |
-
|
11 |
)
|
12 |
-
from .unet_2d_ncsn import UNet2DModelForNCSN
|
13 |
|
14 |
|
15 |
def normalize_images(image: torch.Tensor) -> torch.Tensor:
|
@@ -42,17 +42,17 @@ class NCSNPipeline(DiffusionPipeline):
|
|
42 |
Parameters:
|
43 |
unet ([`UNet2DModelForNCSN`]):
|
44 |
A `UNet2DModelForNCSN` to estimate the score of the image.
|
45 |
-
scheduler ([`
|
46 |
-
A `
|
47 |
"""
|
48 |
|
49 |
unet: UNet2DModelForNCSN
|
50 |
-
scheduler:
|
51 |
|
52 |
_callback_tensor_inputs: List[str] = ["samples"]
|
53 |
|
54 |
def __init__(
|
55 |
-
self, unet: UNet2DModelForNCSN, scheduler:
|
56 |
) -> None:
|
57 |
super().__init__()
|
58 |
self.register_modules(unet=unet, scheduler=scheduler)
|
@@ -151,7 +151,7 @@ class NCSNPipeline(DiffusionPipeline):
|
|
151 |
)
|
152 |
samples = (
|
153 |
output.prev_sample
|
154 |
-
if isinstance(output,
|
155 |
else output[0]
|
156 |
)
|
157 |
|
|
|
5 |
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, ImagePipelineOutput
|
6 |
from einops import rearrange
|
7 |
|
8 |
+
from .scheduler.scheduling_ncsn import (
|
9 |
+
AnnealedLangevinDynamicsOutput,
|
10 |
+
AnnealedLangevinDynamicsScheduler,
|
11 |
)
|
12 |
+
from .unet.unet_2d_ncsn import UNet2DModelForNCSN
|
13 |
|
14 |
|
15 |
def normalize_images(image: torch.Tensor) -> torch.Tensor:
|
|
|
42 |
Parameters:
|
43 |
unet ([`UNet2DModelForNCSN`]):
|
44 |
A `UNet2DModelForNCSN` to estimate the score of the image.
|
45 |
+
scheduler ([`AnnealedLangevinDynamicsScheduler`]):
|
46 |
+
A `AnnealedLangevinDynamicsScheduler` to be used in combination with `unet` to estimate the score of the image.
|
47 |
"""
|
48 |
|
49 |
unet: UNet2DModelForNCSN
|
50 |
+
scheduler: AnnealedLangevinDynamicsScheduler
|
51 |
|
52 |
_callback_tensor_inputs: List[str] = ["samples"]
|
53 |
|
54 |
def __init__(
|
55 |
+
self, unet: UNet2DModelForNCSN, scheduler: AnnealedLangevinDynamicsScheduler
|
56 |
) -> None:
|
57 |
super().__init__()
|
58 |
self.register_modules(unet=unet, scheduler=scheduler)
|
|
|
151 |
)
|
152 |
samples = (
|
153 |
output.prev_sample
|
154 |
+
if isinstance(output, AnnealedLangevinDynamicsOutput)
|
155 |
else output[0]
|
156 |
)
|
157 |
|