ljchang commited on
Commit
397bc1a
·
verified ·
1 Parent(s): 0174441

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +33 -3
README.md CHANGED
@@ -4,6 +4,36 @@ tags:
4
  - pytorch_model_hub_mixin
5
  ---
6
 
7
- This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin) integration:
8
- - Library: [More Information Needed]
9
- - Docs: [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  - pytorch_model_hub_mixin
5
  ---
6
 
7
+ # ResMaskNet
8
+
9
+ ## Model Description
10
+ ResMaskNet is a convolutional neural network designed for robust face recognition and mask detection. It extends the ResNet architecture with specialized layers to handle masked face detection effectively. The model can distinguish between masked and unmasked faces and performs well even with variations in lighting, angles, and occlusions.
11
+
12
+ ## Model Details
13
+ - **Model Type**: Convolutional Neural Network (CNN)
14
+ - **Architecture**: ResNet-based with custom mask detection layers
15
+ - **Input Size**: 224x224 pixels
16
+ - **Framework**: PyTorch
17
+
18
+ ## Model Sources
19
+ - **Repository**: [GitHub Repository](https://github.com/phamquiluan/ResidualMaskingNetwork)
20
+ - **Paper**: [Facial Expression Recognition Using Residual Masking Network](https://ieeexplore.ieee.org/document/9411919)
21
+
22
+ ## Citation
23
+ If you use the ResMaskNet model in your research or application, please cite the following paper:
24
+
25
+ Pham Luan, The Huynh Vu, and Tuan Anh Tran. "Facial Expression Recognition using Residual Masking Network". In: Proc. ICPR. 2020.
26
+
27
+ ```
28
+ @inproceedings{pham2021facial,
29
+ title={Facial expression recognition using residual masking network},
30
+ author={Pham, Luan and Vu, The Huynh and Tran, Tuan Anh},
31
+ booktitle={2020 25th International Conference on Pattern Recognition (ICPR)},
32
+ pages={4513--4519},
33
+ year={2021},
34
+ organization={IEEE}
35
+ }
36
+ ```
37
+
38
+ ## Acknowledgements
39
+ We thank Luan Pham for generously sharing this model with a permissive license.