Upload prompt_dumber.ipynb
Browse files- prompt_dumber.ipynb +134 -0
prompt_dumber.ipynb
ADDED
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [],
|
8 |
+
"source": [
|
9 |
+
"import os\n",
|
10 |
+
"import pandas as pd\n",
|
11 |
+
"\n",
|
12 |
+
"df = pd.read_csv('selected_prompts.csv')"
|
13 |
+
]
|
14 |
+
},
|
15 |
+
{
|
16 |
+
"cell_type": "code",
|
17 |
+
"execution_count": 2,
|
18 |
+
"metadata": {},
|
19 |
+
"outputs": [],
|
20 |
+
"source": [
|
21 |
+
"from openai import ChatCompletion,Completion, api_key\n",
|
22 |
+
"import openai\n",
|
23 |
+
"import time"
|
24 |
+
]
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"cell_type": "code",
|
28 |
+
"execution_count": 3,
|
29 |
+
"metadata": {},
|
30 |
+
"outputs": [],
|
31 |
+
"source": [
|
32 |
+
"openai.api_key = ''"
|
33 |
+
]
|
34 |
+
},
|
35 |
+
{
|
36 |
+
"cell_type": "code",
|
37 |
+
"execution_count": 4,
|
38 |
+
"metadata": {},
|
39 |
+
"outputs": [],
|
40 |
+
"source": [
|
41 |
+
"prompt_sys = \"I'll send you a prompt that's too wordy. You will summarize it in a short for 5-7 words, capture subject, composition, verb first and maybe add a few adjectives. Capture intent precisely. Example output from you: A girl in paris, modern art. Reply only with the new short prompt\""
|
42 |
+
]
|
43 |
+
},
|
44 |
+
{
|
45 |
+
"cell_type": "code",
|
46 |
+
"execution_count": 5,
|
47 |
+
"metadata": {},
|
48 |
+
"outputs": [],
|
49 |
+
"source": [
|
50 |
+
"first_1000 = df.iloc[:1000]\n",
|
51 |
+
"second_1000 = df.iloc[1000:2000]\n",
|
52 |
+
"last_1000 = df.iloc[2000:3000]"
|
53 |
+
]
|
54 |
+
},
|
55 |
+
{
|
56 |
+
"cell_type": "code",
|
57 |
+
"execution_count": null,
|
58 |
+
"metadata": {},
|
59 |
+
"outputs": [],
|
60 |
+
"source": [
|
61 |
+
"import os\n",
|
62 |
+
"import time\n",
|
63 |
+
"from openai import ChatCompletion\n",
|
64 |
+
"from requests.exceptions import ReadTimeout, Timeout\n",
|
65 |
+
"\n",
|
66 |
+
"# Create a subfolder for batch outputs\n",
|
67 |
+
"os.makedirs('batch_outputs', exist_ok=True)\n",
|
68 |
+
"\n",
|
69 |
+
"batch_size = 20 # Define your desired batch size\n",
|
70 |
+
"num_batches = len(last_1000) // batch_size + (1 if len(last_1000) % batch_size != 0 else 0)\n",
|
71 |
+
"\n",
|
72 |
+
"for i in range(num_batches):\n",
|
73 |
+
" print(f\"Starting Batch {i+1}...\")\n",
|
74 |
+
" start_idx = i * batch_size\n",
|
75 |
+
" end_idx = start_idx + batch_size\n",
|
76 |
+
" batch = last_1000.iloc[start_idx:end_idx].copy()\n",
|
77 |
+
" \n",
|
78 |
+
" short_versions = []\n",
|
79 |
+
"\n",
|
80 |
+
" for idx, prompt in enumerate(batch['prompt']):\n",
|
81 |
+
" success = False\n",
|
82 |
+
" retries = 3\n",
|
83 |
+
" while not success and retries > 0:\n",
|
84 |
+
" start_time = time.time()\n",
|
85 |
+
" try:\n",
|
86 |
+
" c = ChatCompletion.create(\n",
|
87 |
+
" model=\"gpt-3.5-turbo\",\n",
|
88 |
+
" messages=[{\"role\": \"system\", \"content\": prompt_sys},\n",
|
89 |
+
" {\"role\": \"user\", \"content\": prompt}],\n",
|
90 |
+
" timeout=20)\n",
|
91 |
+
" short_versions.append(c['choices'][0]['message']['content'])\n",
|
92 |
+
" success = True\n",
|
93 |
+
" end_time = time.time()\n",
|
94 |
+
" elapsed_time = end_time - start_time\n",
|
95 |
+
" print(f\"Processed Batch {i+1}, Prompt {idx+1}. Took {elapsed_time:.2f} seconds.\")\n",
|
96 |
+
" except (ReadTimeout, Timeout) as e:\n",
|
97 |
+
" print(f\"Timeout error for Batch {i+1}, Prompt {idx+1}: {str(e)}. Retrying...\")\n",
|
98 |
+
" except Exception as e: # Catch all other exceptions\n",
|
99 |
+
" print(f\"Unhandled error for Batch {i+1}, Prompt {idx+1}: {str(e)}. Retrying...\")\n",
|
100 |
+
" retries -= 1\n",
|
101 |
+
" time.sleep(10) # Waiting for 10 seconds before retrying\n",
|
102 |
+
"\n",
|
103 |
+
" \n",
|
104 |
+
" # Introduce a small delay between prompts\n",
|
105 |
+
" time.sleep(1)\n",
|
106 |
+
" \n",
|
107 |
+
" batch['short_version'] = short_versions\n",
|
108 |
+
" batch.to_csv(f'batch_outputs/batch_{i+1}_output.csv', index=False)\n",
|
109 |
+
" print(f\"Saved Batch {i+1} to CSV.\")"
|
110 |
+
]
|
111 |
+
}
|
112 |
+
],
|
113 |
+
"metadata": {
|
114 |
+
"kernelspec": {
|
115 |
+
"display_name": "fastai",
|
116 |
+
"language": "python",
|
117 |
+
"name": "python3"
|
118 |
+
},
|
119 |
+
"language_info": {
|
120 |
+
"codemirror_mode": {
|
121 |
+
"name": "ipython",
|
122 |
+
"version": 3
|
123 |
+
},
|
124 |
+
"file_extension": ".py",
|
125 |
+
"mimetype": "text/x-python",
|
126 |
+
"name": "python",
|
127 |
+
"nbconvert_exporter": "python",
|
128 |
+
"pygments_lexer": "ipython3",
|
129 |
+
"version": "3.10.10"
|
130 |
+
}
|
131 |
+
},
|
132 |
+
"nbformat": 4,
|
133 |
+
"nbformat_minor": 2
|
134 |
+
}
|