Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
base_model:
|
| 4 |
+
- distilbert/distilbert-base-uncased
|
| 5 |
+
tags:
|
| 6 |
+
- Safety
|
| 7 |
+
- Content Moderation
|
| 8 |
+
- Hate Speech Detection
|
| 9 |
+
- Toxicity Detection
|
| 10 |
+
language:
|
| 11 |
+
- en
|
| 12 |
+
library_name: transformers
|
| 13 |
+
datasets:
|
| 14 |
+
- Paul/hatecheck
|
| 15 |
+
- dvruette/toxic-completions
|
| 16 |
+
- nvidia/Aegis-AI-Content-Safety-Dataset-2.0
|
| 17 |
+
pipeline_tag: text-classification
|
| 18 |
+
---
|
| 19 |
+
|
| 20 |
+
# 🐾 PurrBERT-v1.1
|
| 21 |
+
|
| 22 |
+
**PurrBERT-v1.1** is a lightweight content-safety classifier built on top of [DistilBERT](https://huggingface.co/distilbert/distilbert-base-uncased).
|
| 23 |
+
It’s designed to flag harmful or unsafe user prompts before they reach an AI assistant.
|
| 24 |
+
|
| 25 |
+
This model is trained on a combination of:
|
| 26 |
+
- [HateCheck](https://huggingface.co/datasets/Paul/hatecheck)
|
| 27 |
+
- [Toxic Completions](https://huggingface.co/datasets/dvruette/toxic-completions)
|
| 28 |
+
- [Aegis AI Content Safety Dataset 2.0](https://huggingface.co/datasets/nvidia/Aegis-AI-Content-Safety-Dataset-2.0)
|
| 29 |
+
|
| 30 |
+
---
|
| 31 |
+
|
| 32 |
+
## 📝 Model Description
|
| 33 |
+
|
| 34 |
+
- **Architecture**: DistilBERT with a classification head (2 labels: `SAFE` vs. `FLAGGED`)
|
| 35 |
+
- **Purpose**: Detect hate speech, toxic content, and unsafe prompts in English text.
|
| 36 |
+
- **Input**: A single string (prompt text).
|
| 37 |
+
- **Output**: A binary prediction:
|
| 38 |
+
- `0` → SAFE
|
| 39 |
+
- `1` → FLAGGED
|
| 40 |
+
|
| 41 |
+
---
|
| 42 |
+
|
| 43 |
+
## 🧠 Training Details
|
| 44 |
+
|
| 45 |
+
- **Base model**: `distilbert-base-uncased`
|
| 46 |
+
- **Epochs**: 2 (initial run)
|
| 47 |
+
- **Optimizer**: AdamW
|
| 48 |
+
- **Batch size**: 16
|
| 49 |
+
- **Learning rate**: 2e-5
|
| 50 |
+
- **Weight decay**: 0.01
|
| 51 |
+
|
| 52 |
+
Loss dropped steadily during training, and metrics were evaluated on a held-out test set.
|
| 53 |
+
|
| 54 |
+
---
|
| 55 |
+
|
| 56 |
+
## 📊 Evaluation Results
|
| 57 |
+
|
| 58 |
+
On an Aegis test slice:
|
| 59 |
+
|
| 60 |
+
| Metric | Score | v1 | v2 |
|
| 61 |
+
|------------|--------|--------|--------|
|
| 62 |
+
| Accuracy | | 0.8050 | 0.8200 |
|
| 63 |
+
| Precision | | 0.7731 | 0.8091 |
|
| 64 |
+
| Recall | | 0.8846 | 0.8558 |
|
| 65 |
+
| F1 Score | | 0.8251 | 0.8318 |
|
| 66 |
+
|
| 67 |
+
Latency per prompt on GPU: **~0.0230 sec**
|
| 68 |
+
|
| 69 |
+
---
|
| 70 |
+
|
| 71 |
+
## 🚀 Usage
|
| 72 |
+
|
| 73 |
+
```python
|
| 74 |
+
from transformers import DistilBertTokenizerFast, DistilBertForSequenceClassification
|
| 75 |
+
import torch
|
| 76 |
+
|
| 77 |
+
# Load trained model and tokenizer
|
| 78 |
+
model = DistilBertForSequenceClassification.from_pretrained("purrgpt-community/purrbert-v1.1")
|
| 79 |
+
tokenizer = DistilBertTokenizerFast.from_pretrained("purrgpt-community/purrbert-v1.1")
|
| 80 |
+
model.eval()
|
| 81 |
+
|
| 82 |
+
def classify_prompt(prompt):
|
| 83 |
+
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, padding=True)
|
| 84 |
+
with torch.no_grad():
|
| 85 |
+
outputs = model(**inputs)
|
| 86 |
+
pred = torch.argmax(outputs.logits, dim=-1).item()
|
| 87 |
+
return "SAFE" if pred == 0 else "FLAGGED"
|
| 88 |
+
|
| 89 |
+
print(classify_prompt("You are worthless and nobody likes you!"))
|
| 90 |
+
# → FLAGGED
|
| 91 |
+
````
|
| 92 |
+
|
| 93 |
+
---
|
| 94 |
+
|
| 95 |
+
## ⚠️ Limitations & Bias
|
| 96 |
+
|
| 97 |
+
* The model is trained primarily on English datasets.
|
| 98 |
+
* It may produce false positives on edgy but non-harmful speech, or false negatives on subtle harms.
|
| 99 |
+
* It reflects biases present in its training datasets.
|
| 100 |
+
|
| 101 |
+
---
|
| 102 |
+
|
| 103 |
+
## 🐾 Intended Use
|
| 104 |
+
|
| 105 |
+
PurrBERT is intended for **moderating prompts** before they’re passed to AI models or for content-safety tasks.
|
| 106 |
+
It is **not** a replacement for professional moderation in high-risk settings.
|